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Abstract

We present a percolation study of two-dimensional crossbar networks and investigate their defect tolerance to missing

crossbars. We find that the rate at which connectivity degrades in such circuits is nearly constant up to a missing-crossbar

fraction f of about 50%, for both site and bond percolation. On the other hand, for f . 0.5 the rate of defect tolerance decreases

very rapidly. This study provides a measure of the degree of reliability of crossbar networks presently envisioned for

nanoelectronics, suggesting that this type of architecture is quite robust with respect to defect concentration. q 2002 Elsevier

Science Ltd. All rights reserved.
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With the expectation of the development of electronics

based on circuit elements having nanometer-scale dimen-

sions, a variety of molecular constituents have come under

active consideration [1–8]. Theoretical studies of such

systems have naturally focussed on the new and subtle

quantum-transport issues that arise in such structures

[10–16]. However, since the synthesis of nanoscale circuits

may involve methods (such as self-assembly and self-ordering

[1–8]) which could incorporate a significant concentration of

defects (such as missing or non-conducting nanowires or

active elements), it may also be useful to consider global

issues such as the sensitivity of the long-range connectivity of

two-dimensional networks to the defect concentration.

Percolation theory [17,18] addresses such issues.

Recently, Heath et al. [19] reported impressive results

for a massively parallel custom-configurable computer

that operates quite successfully even though 3% of its

hardware elements were defective. These authors suggest

that their defect-tolerant computer architecture, whose

wiring network features ‘fat-tree’ crossbar structures,

could accommodate a defect fraction as high as 50%.1

Several interesting examples have been explored that use

such network geometry with nanowires as interconnects

and/or active elements, such as a set of parallel nanotubes

overlayed by a set of nanotube crossbars [20,21]. Even

though this type of crossbar network promises to be an ideal

candidate for future nanoelectronics circuitry, the question

of how sensitive such redundant architecture is to defects is

still unsettled.

In this paper we investigate the percolation properties of

a family of two-dimensional networks that models aspects

of the defect tolerance of a system containing a specific type

of defect, missing or inactive crossbars. This family of

networks encompasses a wide range of anisotropies and a

wide range of average coordination numbers. Both bond and

site percolation are considered. The type of line defect we

consider in the present paper is far more fatal than the single

site or bond defect that will be randomly introduced to study

the percolation properties of a given network. Nonetheless,

we find that the rate at which connectivity degrades in such

networks is nearly constant up to about 50% of the fraction f

of missing crossbars for both site and bond percolation. On

the other hand, for f . 0:5 the rate of defect tolerance

decreases very rapidly (faster than exponentially). This

study quantifies the degree of reliability of two-dimensional

crossbar networks envisioned for nanoscale circuitry,
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suggesting that this type of architecture is quite robust with

respect to defect concentration.

The family of networks we consider is shown in Fig. 1 by

five examples, two of which ((a) and (e)) correspond to the

end members, and one (c) corresponds to the midpoint of the

set. Network (a) is simply an array of separate vertical linear

chains. The bonds represent, for example, nanowires or

conducting carbon nanotubes or sections of conducting

polymer, and may contain active circuit elements [19–21].

The sites represent elements or contact points which are

intended, in the ideal or perfect circuit (represented by

network (e)), to communicate with a similar array of

horizontal linear chains, referred to from now on as

crossbars [19–21]. Between (a), with no crossbars present,

and (e), with all crossbars present, we consider cases with a

fraction f of crossbars missing. This fraction will play the

role of a built-in defect concentration. For the perfect defect-

free network, Fig. 1(e), f ¼ 0; for the opposite limit, Fig.

1(a), f ¼ 1:

For the intermediate cases, we look at structures that are

periodic (two-dimensional crystals) and also maximally

homogeneous. Clusters of T missing crossbars alternate with

clusters of T0 crossbars (see Fig. 1). The vertical repeat is

T þ T0 bond lengths (except for the endpoint networks, for

which it is one bond length). Furthermore, either T or T0 (or

both, for network (c)) is equal to one. These simplicity

conditions restrict the networks considered to an easily-

visualized series, while still allowing us to examine enough

values of f to map out the trend from f ¼ 0 to 1.

The series of networks is two-dimensional (except

for endpoint-network (a)) and anisotropic (except for

endpoint-network (e)). The anisotropy is reflected in the

ratio of the horizontal to the vertical conductivity, which is

given by T0/(T0 þ 1) when f , 0.5 and is given by 1/(T þ 1)

when f . 0.5. All sites of the perfect (square-lattice)

network (e) have coordination number r (number of bonds

stemming from a site) equal to 4; all sites in the decoupled-

chains network (a) have r ¼ 2. All of the other networks

contain both coordinations, and the average coordination krl
decreases linearly with the missing-crossbar fraction f: krl ¼
4 2 2f : For the midpoint network (c), T ¼ T0 ¼ 1, f ¼ 0:5;

and krl ¼ 3.

We have carried out computer simulations for bond

percolation and for site percolation on 21 networks of this

family, using a network size of 3000 £ 3000.2 For each

value adopted for the bond (or site) occupation probability

p, the size of the spanning cluster (if present) was used to

estimate the percolation probability P (the probability that a

randomly chosen element belongs to the unbounded

cluster). Results of 10 simulations (for each network and p

value) were averaged, and p was then changed using a step

size of 0.001. The results for P( p ), the percolation

probability as a function of p (which were insensitive to

the choice of a top-to-bottom or left-to-right spanning-

cluster criterion [17]), were then used to determine the

percolation thresholds pc
bond and pc

site. For the square-lattice

limit of Fig. 1(e), the thresholds agreed well with the known

values [17] of 0.5 (bond) and 0.593 (site); we obtained

values of 0.501 and 0.594, respectively.

Fig. 2 shows our results for the percolation thresholds of

this series of networks, plotted as a function of the missing-

crossbar fraction f (the scale at the bottom) and the average

coordination krl (the scale at the top). In the context of this

Fig. 1. Schematic of the family of networks considered in the

present work. From (a), an array of separate vertical linear chains,

horizontal linear chains are introduced to form the network (e).

Clusters of T missing crossbars alternate with clusters of T0

crossbars.

Fig. 2. Percolation results for the missing-crossbar networks of Fig.

1. The quantity qc is the cutoff threshold 1 2 pc; complementary to

the percolation threshold pc. The horizontal axes give the missing-

crossbar fraction f and the mean coordination number krl. The dots

and squares are the results of the computer simulations, the

continuous curves are polynomial fits to these points.

2 This network size has been chosen to obtain converged results in

the case of network (e) (Fig. 1(e)) for both site and bond percolation

thresholds.
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paper, we have plotted qc on the vertical axis, where qc ¼

1 2 pc: The cutoff threshold qc is the fraction of unoccupied

(disconnected or defective) elements which produces the

absence of long-range connectivity and prevents trans-

mission of a signal across the circuit. The quantity qc can be

interpreted as a rough measure of the defect tolerance of the

network. When qc is large, the network can accommodate a

large concentration of individual defective elements without

the loss of long-range connectivity; when qc is small, a small

concentration of defective components can break the circuit.

The low-defect region near f ¼ 0 (i.e. no crossbars missing)

is expected to be the one of main interest. Here the initial

slope dqc

df
lf¼0 represents the sensitivity of the defect

tolerance to the missing-crossbar fraction characterizing

the network. For bond percolation, the results of Fig. 2 yield

a value of 20.18 for the initial slope:3 for each 1% of

crossbars missing, the cutoff threshold drops by 0.18%. For

site percolation, the corresponding quantity is 0.13%.

Interestingly, the sensitivity of the defect tolerance is nearly

independent of the missing-crossbar fraction up to about

f ¼ 0.5. On the other hand, the same quantity decreases

dramatically for f . 0.5. This behavior is shown in Fig. 3,

where ldqc=df l is plotted as a function of f. It can be

understood intuitively by looking at Fig. 1. For f , 0:5 (e.g.

Fig. 1(d)) the network consists of highly-connected (z ¼ 4)

thick stripes separated by occasional (missing-crossbar)

strips of single z ¼ 2 connections that are readily crossed. It

is only when crossbars cluster and extended chains of z ¼ 2

sites appear (e.g. Fig. 1(b)) that percolation becomes more

difficult and pc increases dramatically.3

To summarize, we have studied percolation properties of

a family of two-dimensional networks related to each other

by the successive removal of extended parallel crossbars.

The networks range in average coordination from 4 to 2.

Such networks are presently envisioned for nanoscale

electronics. We find that such networks are fairly insensitive

to the fraction f of missing crossbars for values of f up to

about 50%. The results provide a measure of the decrease in

network defect tolerance produced by the introduction of

missing crossbars, and suggest that this type of architecture

is quite robust with respect to defect concentration.
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