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Driving denaturation: Nanoscale thermal transport as a probe of DNA melting
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DNA denaturation has been a subject of intense study due to its relationship to DNA transcription and
its fundamental importance as a nonlinear structural transition. Many aspects of this phenomenon, however,
remain poorly understood. Existing models fit quite well with experimental results on the fraction of unbound
base pairs versus temperature, but yield incorrect results for other essential quantities such as the base pair
fluctuation time scales. Here we demonstrate that nanoscale thermal transport can serve as a sensitive probe of
the underlying microscopic physics responsible for the dynamics of DNA denaturation. Specifically, we show
that the heat transport properties of DNA are altered significantly as it denatures, and this alteration encodes
detailed information on the dynamics of thermal fluctuations and their interaction along the strand. This finding
allows for the discrimination between models of DNA denaturation and will help shed new light on the nonlinear
vibrational dynamics of this important molecule.
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Besides being the “molecule of life”–or perhaps because of
it–DNA lives at a unique position where its double-stranded
structure can unravel into two single strands, that is, it
denaturates or “melts,” via changes in conditions such as
temperature or ionic concentration [1]. Local melting of DNA
due to thermal fluctuations, which can occur well below
the denaturation temperature, is thought to play a major
role in the formation of the transcription bubble [2]. The
denaturation of DNA proceeds via the thermal breakage
(dissociation) of base pairs and a nonlinear interaction between
base pairs sharpens this transition via cooperative effects
in base pair unbinding [3–5]. As a result, the accurate
description of mechanisms of DNA denaturation requires one
to not only correctly account for local thermal fluctuations
but also how these fluctuations interact along the strand.
These processes are typically probed indirectly through the
measurement of the DNA melting curve, the fraction of
unbound base pairs versus temperature at equilibrium, thus
hindering the understanding of the denaturation mechanisms.
However, thermal fluctuations and their interaction along
the strand are the same processes that occur in thermal
transport, which, as we shall see, can give an independent and
more direct assessment of the proposed DNA denaturation
mechanisms.

During the past decade there has been tremendous progress
in measuring the thermal and electronic properties of molec-
ular systems [6,7], including a recent experiment on the heat
conduction of inhomogeneous DNA-gold nanocomposites [8].
However, except for few studies relevant to double-stranded
DNA [9–11], no existing analysis of thermal transport takes
into account DNA’s large structural fluctuations that eventually
result in its denaturation.
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In this paper the nonequilibrium behavior of single-
coordinate nonlinear models of DNA are analyzed as heat
is driven through DNA via two thermal reservoirs (as shown
schematically in Fig. 1). The preeminent single-coordinate
model for thermally driven denaturation of DNA is the
Peyrard-Bishop-Dauxois (PBD) model [3–5], which is be-
lieved to capture the main physical processes behind DNA
denaturation [12]. By first deriving an analytic expression for
the thermal conductance, κ , we show that the PBD model
predicts a substantial jump in κ upon DNA denaturation. That
is, the conductance of DNA is predicted to actually increase
despite the fact that the DNA becomes disordered as it is broken
into two single strands. This change is a delicate balance of the
model parameters and the mechanisms that it represents. In-
deed, we show that another related model [13], which also can
describe the statistical properties of DNA denaturation, gives
qualitatively different nonequilibrium behavior, predicting a
drop in κ . Thus, by driving DNA out of equilibrium, the basic
physical aspects of denaturation, thermal fluctuations and their
coupling along the molecule, can be probed.

We begin with a description of the PBD model [4]. This
model, as well as other single-coordinate models for DNA,
reduces the DNA strand to a one-dimensional, classical lattice
with each base pair represented by a single coordinate, the
collective stretching of the hydrogen bonds in a Watson-Crick
pair. The PBD Hamiltonian takes on the form

H =
∑

n

[
mẏ2

n

2
+ V (yn) + W (yn,yn−1)

]
, (1)

where yn represents the stretching coordinate within the nth
base pair. An on-site Morse potential V (yn) = D(e−ayn − 1)2

describes the harmonic binding of the base pair at small yn

with the angular frequency
√

2Da2/m and unbinding at yn �
a with the finite dissociation energy D. The PBD nearest-
neighbor potential is given by

W (yn,yn−1) = K

2
(1 + ρe−α(yn+yn−1))(yn − yn−1)2. (2)
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FIG. 1. (Color online) Schematic of DNA between two heat
reservoirs that probe its structure via an energy current.

The PBD model has been quite successful in characterizing
statistical properties of DNA near the denaturation transition
[14,15]. However, since it was not derived from a microscopic
Hamiltonian, one has to validate the model by comparison
with experimental results. In this regard there is a considerable
ambiguity in the results for short DNA strands [14,16–18] as
well as the time scales for the opening of bubbles at room
temperature [16,19]. Thermal transport, as we show below, can
determine some of the main features single-coordinate models
should display (beyond equilibrium denaturation curves) and
help settle the above discrepancies.

We start our analysis by examining the behavior of the PBD
model in the low (L) and high (H ) temperature limits, where
it becomes harmonic with the effective Hamiltonian

Hμ =
∑

n

[
mẏ2

n

2
+ Dμy2

n + Kμ

2
(yn − yn−1)2

]
, (3)

with μ = L,H . Numerical studies show that the full PBD
model, described by the Hamiltonian in Eq. (1), undergoes a
sharp transition corresponding to the denaturation of DNA [5].
Above the transition temperature Tc the base pairs become
unbound, that is, the on-site potential approaches a constant
leading to DH = 0. The nearest-neighbor potential becomes
harmonic with KH = K . In the low-temperature limit the
strand will again have harmonic behavior with the parameters
of the effective Hamiltonian DL = Da2 and KL = K (1 + ρ)
(the latter reflects the larger nearest-neighbor coupling of
the low-temperature strand). Even at low temperatures the
nonlinearity of the potential is important, but the harmonic
limit gives the correct physical interpretation of the numerical
results on the full model we present later.

We introduce the concept of the thermal conductance
ratio R as the ratio of the conductance between the high-
and low-temperature phases R ≡ κH/κL. For ohmic heat
reservoirs strongly coupled to the first and last site of the
strand, it can be calculated to be (see Refs. [20,21] and the
supplemental material [22])

R ≈ 2KHDL

K2
L

, (4)

which uses the lowest order term in KL/DL for κL (see
Eq. (11) in the supplemental material [22]). Since Eq. (4)
is for strong coupling, it represents an extreme value for R.
For the PBD model with the original parameters from Ref. [4],
the corresponding ratio is RPBD ≈ 18.1 That is, the transition
from low to high T results in a substantial jump in κ due
to the weakening of the on-site confining potential, that is,
the base pair dissociation, as T crosses Tc from below. The
removal of the on-site potential softens the modes of the
strand, making them more efficient in the transport of heat.
This is more transparent if one examines the low-temperature
conductance

κL ∝ K2
L

DL

∝ K2
L

mω2
L

, (5)

where ωL is the on-site frequency and we have taken KL/DL

to be small. Equation (5) shows that the conductance increases
with decreasing frequency.

We note that the PBD model gives a novel phenomenon
compared to other transitions. For example, in the ice-water
transition at 273 K the conductance decreases rather than
increases with a ratio of RH2O ≈ 0.25 [23]. This is mainly due
to the breaking of crystal structure across the transition that
reduces the coupling between molecules. Another example
is single-crystal C60, which exhibits a face-centered-cubic to
simple-cubic structural transition at 260 K [24]. The ratio for
this transition can be estimated from the experimental data to
be RC60 ≈ 0.75.

The thermal conductance ratio is thus important in iden-
tifying the underlying mechanisms of a structural transition.
The balance of the softening of the lattice and the reduction of
the nearest-neighbor coupling determines both the magnitude
of the conductance change as well as whether it increases or
decreases. Different proposals for the nonlinear forms of the
model will give different limiting harmonic forms, changing
the conductance behavior across the temperature range not
only quantitatively but also qualitatively. For example, another
single-coordinate model of DNA is that of Joyeux and
Buyukdagli (JB) in Ref. [13]. It uses the same on-site potential
but employs an alternative nearest-neighbor potential that,
although giving a very similar melting curve, results in a
different high-temperature harmonic Hamiltonian (see the
supplemental material [22]). In the strong-coupling limit R

changes as

RPBD ≈ 18 −→ RJB ≈ 0.017.

That is, the PBD model gives qualitatively distinct behavior
from the JB model because the latter looses virtually all of its
nearest-neighbor coupling at high temperature, that is, it looks
more like the ice-to-water transition in character. This quali-
tative conclusion does not change even when using different

1We use the original parameters for the PBD model from Ref. [4]
since there are still discrepancies in what parameters should be used
(see, e.g., Refs. [15,31,32]). There is a large positive R in the PBD
model when changing physically relevant parameters, making it a
robust feature of the model. Thermal transport measurements as well
will help settle what parameters actually describe DNA.
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parameter sets that have been developed.2 Therefore, while
they both agree well with some denaturation experiments, the
conductance ratio can be used to directly probe the physics
contained within their respective interaction potentials. While
temperatures much higher than the transition temperature are
beyond the validity of the models, the opposing predictions
persist within a range of temperatures, including around the de-
naturation transition. In addition, having the ends of the DNA
“clamped” together on each of the heat reservoirs–one way
to measure its thermal transport properties–ensures that the
fluctuations described by these single-coordinate models
persist to higher temperatures. This strongly supports using
the heat conduction as a test to determine basic aspects of
DNA denaturation that need to be represented in microscopic
models.

To gain further insight into the nonequilibrium behavior
of DNA, we solve for the full dynamics of the PBD model
[Eq. (1) with the appropriate stacking interaction] by numeri-
cally integrating the equations of motion of the DNA between
two Langevin reservoirs (see the supplemental material [22]).
In Fig. 2(a) we plot the thermal current as a function of the
average reservoir temperature, while keeping the temperature
difference constant at a value significantly lower than the width
of the phase transition so that the entire strand is always in one
phase.

As seen in Fig. 2, the ability of the DNA to conduct heat
increases substantially after it becomes denaturated according
to the PBD model, thus confirming our analytical prediction.
Furthermore, the conductivity at 〈T 〉 = 300 K is 0.18 pW/K Å
(smaller than that in Ref. [11]). The difference is due to
different interactions taken into account, which result in an
absence of any signatures of denaturation up to 350 K in
Ref. [11]. Thus their results do not incorporate the effect of
strong nonlinearities due to denaturation or local melting. We
have also calculated the thermal current for purely harmonic
strands with the parameters corresponding to the different
phases [as discussed below Eq. (3)]. The thermal conductance
ratio for the harmonic limits is found numerically to be
RPBD ≈ 6, which is lower than our analytical result due to
the more realistic reservoir implemented in our simulations
(see the supplemental material [22]). Figure 2(c) plots the
heat capacity C (per base pair) as a function of temperature,
indicating the denaturation transition and the approach to
harmonicity (where C/kB is always unity).

The nonlinear model, however, gives much richer behavior.
While at high temperature there is convergence of the
nonlinear model to its harmonic limit, at low temperatures
a nonmonoticity appears, more clearly seen in Fig. 2(b) where
we plot the thermal current as a function of temperature on
a logarithmic scale. The nonmonotonicity, reflected in the
drop of κ in the temperature range 0–100 K, is mainly due
to phonon scattering off the anharmonic on-site potential.
This signature, conductance versus temperature, indicates the
strength of the nonlinearity in DNA dynamics, which we
will investigate further in a future contribution. Although the

2For instance, RPBD = 7.5 for the parameter sets in Refs. [14] and
[33], and RPBD = 3.7 for those in Refs. [31] and [32].

(a)

(b) (c)

FIG. 2. (Color online) Thermal transport across the denaturation
transition. (a) Thermal current through DNA as a function of
average temperature 〈T 〉 = (TL + TH ) /2 calculated while keeping
the temperature difference �T = TH − TL = 9.3 K constant. The
thermal current displays a steep rise as the temperature crosses
the transition temperature Tc 	 350 K. Low- and high-temperature
simulations of the harmonic strands defined by HL and HH are given
by blue and red lines, respectively. The numerical results on the full
PBD model approach the harmonic limits at sufficiently low and
high temperatures. (b) Logarithmic scale plot of the thermal current.
The convergence to the harmonic limit, as well as an nonmonotonic
dependence of the thermal current on temperature at low temperatures
and a sharp rise near the transition are visible. The latter indicates
that DNA may be suitable to function as a molecular thermal switch.
(c) Dependence of equilibrium heat capacity C (normalized per length
of the strand) on temperature showing the transition at Tc and the
convergence to the harmonic value C/kB = 1. The convergence to
the harmonic value at high temperature is much more rapid than at low
temperature, indicating that the anharmonicity of the Morse potential
is still important even at low temperature.

single-coordinate models we study here were proposed to
study DNA behavior near the denaturation transition, such
a nonlinear signature should still appear at low temperature,
implying that a measurement of DNA thermal transport could
also serve to define the temperature range of validity of the
PBD model. It also gives rise to a three orders of magnitude
increase of the thermal conductance, indicating that this
characteristic of structural phase transitions can be useful in
developing heattronic devices such as thermal switches and
thermal transistors [25].
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In the above discussion we have considered only homoge-
neous DNA strands. It is clear that heterogeneity will give rise
to interesting effects in the conductance. Alternating sequences
of AT and GC pairs, for instance, will tend to suppress the
low-temperature conductance due to the mismatch between
parameters of base pair binding potentials, while the high-
temperature conductance will remain roughly the same. This
will result in a substantial increase in R [25], which will also
occur due to random or genomic DNA. Differences between
AT and GC pairs gives an additional experimental test of this
class of models [25].

To conclude, we have investigated the out-of-equilibrium
properties of single-coordinate models of DNA in order to
elucidate the nonlinear nature of denaturation. The balance
of lattice softening and reduced coupling in different models
leads to qualitatively distinct predictions for the thermal
conductance ratio, the experimental measurement of which
will illuminate these fundamental aspects of DNA and thus
should shed light on the underlying mechanisms of DNA
denaturation. Due to the nature of the effect, experiments will
be robust with respect to heterogeneity, defects, and contacts,

unlike the electrical counterpart [26]. Recent experiments
on the heat conduction of nanotubes [27] and DNA-gold
nanocomposites [8] give a potential route to developing the
experimental setup. However, it will be necessary to perform
the experiment in conditions of high humidity so the DNA
retains its B form [28]. Such an experiment could also
be done on double- and single- stranded DNA separately,
which would remove uncertainties due to the lack of solvent.
Fluorescence experiments to detect local openings of the DNA
strand [29,30] can further complement the thermal transport
measurements. The thermal conductance ratio may also be
useful in understanding other structural transitions, such as
nanotube collapse. Finally, such experiments will pave the road
to creating molecular thermal switches and open new avenues
in understanding and controlling thermal flow at the nanoscale.
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ANALYTIC DERIVATION OF THE THERMAL
CONDUCTANCE

The thermal conductance of a classical harmonic lat-
tice can be found analytically. Our starting point is the
procedure of Refs. [1, 2]. We consider the limiting cases
of the single-coordinate Hamiltonian (Eq. (1) in the main
text) for a lattice of length N . One already saw that the
low- (L) and high- (H) temperature limits can be approx-
imated by a harmonic Hamiltonian of the form

Hµ =
∑
n

[
mẏ2

n

2
+Dµy

2
n +

Kµ

2
(yn − yn−1)2

]
, (1)

where µ = L, H.
To simplify the analysis, the lattice is coupled to two

heat reservoirs at the first and last sites, which gives the
equations of motion

mÿn = −2(Dµ +Kµ)yn +Kµ(yn−1 + yn+1)

+ (δn,1 + δn,N )
[ˆ t

−∞
dt′A(t− t′)yn(t′) + ηn(t)

]
.

(2)

We choose the spectrum of the dissipation to be ohmic,
A(ω) = −iγω, with coupling γ, and the noise to be white
noise, 〈ηL/H(ω)ηL/H(ω′)〉 = 4πTL/Hγδ(ω + ω′), with
TL/H the low and high reservoir temperatures. This form
for the reservoirs will satisfy the fluctuation-dissipation
theorem. The resulting equations of motion are

mÿn = −2(Dµ +Kµ)yn +Kµ(yn−1 + yn+1)
+ (δn,1 + δn,N ) [−γẏn(t) + ηn(t)] . (3)

The solution for the coordinates has the form

yn(t) = (1/2π)
ˆ ∞
−∞

dωŶ −1
nm(ω)η̂m(ω)eiωt, (4)

where η̂ is a vector of length N with the first and last
components being ηL/H(ω) and the rest being zero. It
represents the coupling of the reservoirs to the ends of
the lattice. The N×N matrix Ŷ = φ̂−ω2M̂−Â encodes
the solution. Here φ̂nm = 2(Dµ+Kµ)δn,m−Kµδn,m+1−
Kµδn,m−1, M̂ij = mδi,j , and Â11 = ÂNN = A(ω) and
Ânm = 0 otherwise.

The heat current flowing into the lattice is J =
〈[
´ t
−∞ dt′A(t − t′)y1(t′)]ẏ1(t)〉, where the average is over

the noise. Setting γ = λm, the heat current becomes

Jµ =
∆Tλ2m2

π

ˆ ∞
−∞

dωω2{(D1,N − λ2ω2m2D2,N−1)2

+ λ2ω2m2(D1,N−1 +D2,N )2}−1|C1,N |2, (5)

where ∆T = TH − TR is the temperature difference of
the reservoirs, C1,N is the cofactor of Ŷ1,N , and Dn,m is
the determinant of the submatrix of (φ̂−ω2M̂) from the
n-th row (column) to the m-th row (column). It follows
that |C1,N |2 = K2N−2

µ and Dn,m = Kn−m+1
µ D0

n,m. The

elements ofD0
nm are given by

(
D0

1,N −D0
1,N−1

D0
2,N −D0

2,N−1

)
= T N ,

where

T =
(

2(1 +Dµ/Kµ)− (m/Kµ)ω2 −1
1 0

)
. (6)

We look for the eigenvalues of T of the form exp(±iq)
with real q because those eigenvalues correspond to prop-
agating modes. This requirement imposes that 2 cos(q) =
2(1+Dµ/Kµ)−(m/Kµ)ω2. After changing variables from
ω to q that satisfy this constraint, the final expression (for
an infinite lattice (N →∞)) is

Jµ
∆T

=
γ

2πm

ˆ 2π

0

dq
sin2(q)

1 + 2γ2

mKµ

[
1 + Dµ

Kµ
− cos(q)

] . (7)

This gives, explicitly for the low and high temperature
thermal conductance κµ = Jµ/∆T ,

κµ =
kBmK

2
µ

4γ3

[
1 +

2γ2

mKµ
+

2γ2Dµ

mK2
µ

− Bµ
]
, (8)

with

Bµ =

√
1 +

4γ2

mKµ
+

4γ2Dµ

mK2
µ

+
8γ4Dµ

m2K3
µ

+
4γ4D2

µ

m2K4
µ

. (9)

With these expressions one can explicitly find the thermal
conductance ratio R. We have verified that for reservoirs
contacted to a single site on each end, the thermal con-
ductance from our numerical simulations agree with our
analytic formula to within 10− 15%, which we attribute
to finite size effects in the numerical simulations.

We can take various limiting forms of these equations.
If we define the prefactor as κ̃µ and a dimensionless reser-
voir coupling as

γµ =
γ√
mKµ

, (10)
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the expressions for the conductance become

κµ = κ̃µ

[
1 + 2γ2

µ + 2γ2
µ

Dµ

Kµ
− Bµ

]
, (11)

with

Bµ =

√
1 + 4γ2

µ + 4γ2
µ

Dµ

Kµ
+ 8γ4

µ

Dµ

Kµ
+ 4γ4

µ

(
Dµ

Kµ

)2

.

(12)
The appropriate limiting forms for our case are the fol-
lowing. When the high temperature harmonic limit has
no onsite potential, then the heat conductance becomes

κH = κ̃H

[
1 + 2γ2

H −
√

1 + 4γ2
H

]
. (13)

For a low temperature limit that has a much greater
onsite term than the nearest neighbor coupling, i.e.,
KL/DL � 1, the heat conductance becomes

κL ≈
κ̃Lγ

2
LKL

DL
, (14)

which also assumes that the dimensionless coupling to the
reservoirs is γL ≥ 1. For strong coupling to the reservoirs,
the ratio becomes

R ≈ 2KHDL

K2
L

. (15)

This is the analytic expression we use within the article.
The strong coupling limit gives the extreme value of R.

Now we show that the characteristic frequency in the
PBD model is lowered as T crosses Tc from below.
For the low temperature Hamiltonian, the correspond-
ing equation of motion is

mÿn = −{2Da2yn+K(1+ρ)[(yn−yn−1)+(yn−yn+1)]}.
(16)

From the ansatz yn = y0
ne
iωt−ikn , one obtains the

phonon spectrum as

mω2 = 2Da2 + 2K(1 + ρ)[1− cos(k)]. (17)

Thus, the frequency band of phonons is
√

2Da2/m ≤
ω ≤

√
[2Da2 + 4K(1 + ρ)]/m. For the high temperature

Hamiltonian, the equation of motion is

mÿn = −K[(yn − yn−1) + (yn − yn+1)] (18)

and the phonon spectrum is

mω2 = 2K[1− cos(k)]. (19)

The frequency band of phonons is 0 ≤ ω ≤
√

4K/m.
The two limiting Hamiltonians are both harmonic and
the characteristic frequency is indeed lowered, and sim-
ilar considerations apply for other models. In the low
temperature limit, the onsite potential stiffens the DNA

compared to the high temperature limit, which results in
the raising of the phonon spectrum of the low temper-
ature limit compared to the high temperature. In the
latter, as well, the nearest neighbor coupling drops from
K (1 + ρ) toK shrinking the bandwidth. This trade-off is
responsible for the change in thermal conductance across
the transition. If the drop in nearest neighbor coupling
is small, then the softening will dominate, and the heat
conductance will increase because these softened modes
can conduct heat more effectively.

NUMERICAL SIMULATION DETAILS

To study the dynamics of the DNA out of equilibrium
we solve numerically the Langevin equation, which de-
scribes the dynamics of a Hamiltonian system in the pres-
ence of thermal baths. The Langevin equation is given
by

mÿn = −∂W
∂yn
− ∂V

∂yn
− Γnẏn + f(t), (20)

where W (yn) and V (yn) are the potentials described in
Eq. (1) of the main text. The DNA strand is split into
three regions, the two ends, each of length l, serve as the
Langevin thermal reservoirs at temperatures TL and TH .
This means that the friction term Γn only operates for
n within the thermal reservoirs. The fluctuating term
f(t) is Gaussian white noise which obeys the fluctuation-
dissipation relation 〈f(t)f(t′)〉 = 2ΓnkBTL(H)δ(t− t′) for
the low and high temperature reservoirs, respectively.

The middle region of the length M is the free DNA
strand, which is driven out of equilibrium by the
Langevin reservoirs when TL 6= TH . The parameters
for the simulations are M = 60 and l = 20, and the
PBD model parameters are D = 0.04 eV, a = 4.47 Å

−1
,

K = 0.04 eV/Å
2

, m = 300 u, ρ = 0.5, and α = 0.358 Å
−1

[3]. The strand is homogeneous DNA except for the ran-
dom forces and friction in the Langevin regions. The
equations of motion are integrated with the fourth-order
Runge-Kutta method. The temperature profile of the
strand is evaluated by defining the local temperature
at site n as kBT

loc
n = m〈ẏ2

n〉, where the average is
over time. The local heat current is given by Jn =
−
〈
ẏn

∂W (yn,yn−1)
∂yn

〉
. The simulations are performed long

enough to allow the system to reach its steady state.
The simulations of the heat capacity were performed

by connecting Langevin reservoirs of identical tempera-
ture to every site in the chain and evaluating the average
energy per site by E =

〈
mẏ2

n

2 + V (yn) +W (yn, yn−1)
〉

,
where the averaging is performed over time and all the
sites of the chain. Then, the dependence of average en-
ergy per site on temperature, E(T ), obtained by scanning
through a set of temperature points, was numerically dif-
ferentiated to yield the heat capacity.
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We also performed simulations on the JB model [4],
which has the same onsite potential as the PBD model
and uses the nearest neighbor potential

W (yn, yn−1) = Kb(yn−yn−1)2 +
∆H

2
(1−e−b(yn−yn−1)

2
).

(21)
The parameters in this interaction are Kb = 10−5 eV/Å

2
,

∆H = 0.44 eV, and b = 0.1 Å
−2

. Thus, the low temper-
ature limit is KJB

L = 2Kb + b∆H, with DJB
L = DL. The

coupling KJB
L = 0.044 eV/Å

2
is not substantially differ-

ent from the PBD model, which has KL = 0.06 eV/Å
2
.

However, numerical simulations indicate that in the high
temperature limit the heat conductance converges to the
conductance of a harmonic Hamiltonian with nearest
neighbor interaction Kb(yn−yn−1)2. In other words, the
quantity (yn− yn−1)2 is sufficiently large to suppress the
second term in Eq. (21). Thus, the high temperature ef-

fective nearest neighbor coupling is KJB
H = 2Kb, which is

substantially smaller than the low temperature coupling,
and also substantially smaller than the high temperature
coupling of the PBD model.
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