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consisting of an array of superconducting 
niobium islands on a normal metallic gold 
substrate. By controlling the height, diameter 
and spacing of the islands, they were able to 
control the characteristics of the array. And 
because the individual islands were each 
composed of many different superconducting 
grains, the characteristics exhibited by their 
arrays are richer than those of similar but 
simpler arrays explored in previous studies — 
with surprising results.

At temperatures just above niobium’s bulk 
superconducting transition temperature 
(9 K), the temperature dependence of the 
resistivity of the arrays was flat. But as the 
temperature was gradually lowered, at 
some point (T1) below this temperature, 
the resistivity began to decrease slowly. In 
this state, one expects the electrical current 
to have been carried by Cooper pairs 
tunnelling from island to island (Josephson 
tunnelling), rather than by normal electrons. 
At this temperature, the multigrain nature 
of the superconducting islands gives rise 
to multiple incoherent Cooper pair states. 
This means that the interisland tunnelling 
is incoherent as well, analogous to the 
incoherent transport of electrons in a metal 
at finite temperature.

As the temperature is lowered further, 
the resistance of the system continues to fall 
slowly until, at some second temperature (T2), 
it drops precipitously to zero. The authors 
explain this behaviour in terms of a gradual 
increase in the coherence of the Cooper pair 
condensate. Coherence first develops within 
each island and the Cooper pair states of its 
grains begin to coalesce. This then spreads 

as the temperature falls until, at T2, the 
condensate in the array as a whole becomes 
coherent, or is as coherent as is allowed in 
two dimensions (following the model for 
2D superfluidity6).

So how can it be said that this experiment 
suggests the existence of a putative 2D 
metal — particularly in light of the fact that 
it should be forbidden4? Eley et al. found that 
the temperature, T2, changed considerably 
as the interisland spacing of their arrays 
was varied, falling monotonically with 
increasing separation. At the largest spacing 
investigated, the authors found T2 to be as 
low as 1 K — well below the superconducting 
transition temperature of bulk niobium and 
tantalizingly close to 0 K. The results indicate 
that it might be possible to build an array 
with T2 = 0. The resistance of such an array 
would never fall to zero — it would never 
become superconducting — but remain finite, 
even as it approached absolute zero. Such 
an array would, for all intents and purposes, 
represent the elusive 2D metal.

Figure 1 illustrates where this new 
metallic state lies in the phase diagram of 
a hypothetical 2D metal. The conventional 
metallic state exists only in total absence 
of disorder, W, and for sufficiently weak 
and positive Coulomb interaction, U. 
It is destroyed by the Mott transition 
for large positive U and for any level 
of W. On the other hand, for attractive 
effective interactions, described here by 
negative values of U, we would expect 2D 
superconductivity. For small values of U, 
this will be a Bardeen–Cooper–Schrieffer-
type superconductor, whereas for stronger 

attractive interactions a Bose condensate 
of pre-formed pairs7 might occur. The new 
metallic state proposed by Eley et al.1 lies in 
a region where these pairs are mobile, but 
are not fully Bose–Einstein condensed into a 
superconducting state.

If it is possible to achieve, this zero-
temperature metallic state would therefore be 
very different from a conventional metal, the 
properties of which are governed by electrons. 
Rather, it would be more accurate to describe 
it as a quantum liquid of bosons — as Cooper 
pairs behave like bosons. This therefore 
would be a realization of a gas of charged 
bosons, first investigated in 1955 by Schafroth 
as a model for superconductivity7. But just 
as a conventional metallic state encounters 
problems when it is taken from 3D to 2D, 
so too does a Bose gas, which is unable to 
manifest the equivalent of Bose–Einstein 
condensation in 2D. Such a state would be 
something that we have not yet encountered. 
Perhaps the most apt description of such a 
state is that of a quantum disordered phase of 
the condensate1.� ❐
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Topological defects are local defects 
in otherwise ordered structures that 
can only be removed by some global 

deformation — no amount of local bending 
at or twisting around the defect can remove 
them from the structure. Such defects are 
well known in both classical and quantum 
settings; examples include domain walls and 
dislocations in crystals, vortices in two-
dimensional superfluids and monopoles 
in liquid crystals1. Although a topological 
defect is local in structure, it is also intimately 

connected to the long-range ordering of 
the structure in which it is embedded. In 
a magnet, defects such as domain walls 
separate regions characterized by different 
magnetization or global spin order, resulting 
in discontinuous order parameters and 
different instances (or ‘resolutions’) of a 
broken symmetry. It is therefore natural to 
expect that the origins of topological defects 
should be related to the origins of broken 
symmetries and hence to the microscopic 
details of phase transitions. Such defects may 

also exist in the mathematical fields describing 
matter at high energies and temperatures, as 
a result of symmetry-breaking cosmological 
phase transitions in the early Universe. That 
insight has spurred much interest in the 
modelling of cosmological events by more 
commonplace phase transitions that can be 
studied in condensed-matter systems2.

If topological defects are local, irremediable 
faults within a global structure, then what 
would it mean for the global system to be in a 
quantum superposition state of these defects? 

TOPOLOGICAL DEFECTS

Topology in superposition
Topological defects are encountered in fields ranging from condensed-matter physics to cosmology. These 
broken-symmetry objects are intrinsically local, but theoretical work now suggests that non-local quantum 
superpositions of such local defects might arise in a quantum phase transition.
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Clearly, this has to be something very different 
from a quantum-superposition state of two 
spins localized at different points in space. 
As the defect is only defined relative to an 
underlying global symmetry, a superposition 
of defects seems to imply that this should be 
accompanied by a quantum superposition of 
the global symmetry states, or at least by some 
residual ‘shadow’ of the defect superposition 
on a much larger region beyond the defect. 
Writing in Nature Physics, Jacek Dziarmaga, 
Wojciech Zurek and Michael Zwolak propose 
a simple prototype for such a quantum-
superposition state of topological defects, 
with an example drawn from the well-known 
one-dimensional quantum Ising model3. 
In this model, a chain of spin-half particles 
with ferromagnetic interactions is aligned 
along a longitudinal axis (such that the 
spins can point either ‘up’ or ‘down’), and is 
subjected to a magnetic field in a transverse 
direction. A domain wall separating regions 
of up and down magnetization constitutes 
a kink, which also serves as a locator for 
the change from one ground state (all spins 
down) to another degenerate ground state 
(all spins up). Constructing a quantum state 
with superposed kink locations results in 
the domain walls being in superposition, 
but also ensures that all spins between these 
two locations are now also in superposition. 
Taking the defects farther apart then leads 
to a quantum superposition of the entire 
order parameter for the bulk-like regions 
between the two superposed kink locations 
(see the classical analogue shown in Fig. 1). 
Dziarmaga et al. demonstrate how these 
non-local superpositions might be generated 
from single kinks by modifying the spin–spin 
couplings at distinct locations and analyse the 
signatures of coherence that could be detected 
with interference measurements.

This intriguing analysis raises several 
questions with implications both for the 
meaning and realizability of macroscopic 

quantum superpositions and for the 
dynamics of symmetry breaking in phase 
transitions. First, if it were possible to make 
such a quantum superposition of topological 
defects that are separated by a macroscopic 
distance, what would the true size of this 
quantum superposition be? Is it trivially 
small on account of being a superposition of 
a single effective degree of freedom, that is, 
the order parameter? Or is it macroscopic, 
corresponding to the large number of spins 
between the two kinks that are in different 
spin states in each of the two branches of the 
superposition? This resembles the situation 
encountered for quantum superpositions 
of flux states of superconducting loops 
containing Josephson junctions, where 
very different answers are obtained using a 
macroscopic quantum circuit description 
and a microscopic all-electron theory4. The 
effective size of complex large-scale quantum 
superposition states depends on how many 
measurements are required to distinguish the 
two branches5 and hence different answers 
might be expected from measurement of 
individual spins or of an order parameter. 
Second, just how large a superposition could 
one make? The question of a possible intrinsic 
size limitation to quantum mechanics has 
tantalized scientists since Erwin Schrödinger 
first presented his extreme paradox of a 
quantum superposition of a cat in live and 
dead states6. Even making this paradox more 
palatable by allowing only component states 
that might conceivably be interconverted 
in both directions (thereby removing any 
live–dead superposition) still leaves us with 
the classic questions of, on the one hand, 
how large and how complex a quantum 
superposition can be made, and, on the other 
hand, why we normally ‘see’ only one branch 
of such a superposition?

Dziarmaga et al.3 do not consider the size 
and complexity of a quantum superposition, 
but provide an eloquent analysis of why 

we see only one branch. They show that 
environmentally induced decoherence will 
cause the kink-superposition state to decay 
at a rate proportional to the number of spins 
between the two kinks, generating a classical 
mixture of the two broken-symmetry ground 
states. Rapidly decohering non-local quantum 
superpositions of topological defects thereby 
provide a possible dynamical rationale for the 
‘collapse’ into a single broken-symmetry state, 
analogous to the process of measurement on 
a quantum system. This leads to an appealing 
microscopic picture of the dynamics of the 
phase transition in the quantum Ising model. 
Initially, a single kink is formed by fluctuation 
of the interaction between two specific spins, 
followed by transformation of this local 
defect to a non-local kink-superposition state 
by the proliferation of further fluctuations. 
Finally, fast decoherence of the superposition 
leads to a single broken-symmetry state 
at the other side of the phase transition. 
Extending these ideas to cosmology will 
require a rationalization of decoherence in 
a quantum universe — a notoriously tricky 
problem — but the work of Dziarmaga et al. 
suggests a general scenario for the dynamics 
of symmetry breaking.� ❐
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Figure 1 | Last domino standing. Topological defects, such as domain walls separating dominoes falling in opposite directions, are extremely stable. The 
domino domain wall is a kink between regions of different ordering. When this kink is put into a quantum superposition of two different position states, 
the entire region between the two locations is brought into quantum superposition, leading to the possibility of large-scale superposition states as these 
locations are taken farther apart.
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