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We study an Ising chain undergoing a quantum phase transition in a quantum magnetic field. Such a field
can be emulated by coupling the chain to a central spin initially in a superposition state. We show that – by
adiabatically driving such a system – one can prepare a quantum superposition of any two ground states of
the Ising chain. In particular, one can end up with the Ising chain in a superposition of ferromagnetic and
paramagnetic phases – a scenario with no analogue in prior studies of quantum phase transitions.
Remarkably, the resulting magnetization of the chain encodes the position of the critical point and universal
critical exponents, as well as the ground state fidelity.

Q
uantum phase transitions (QPTs) occur when dramatic changes in the ground state properties of a
quantum system are induced by a tiny variation of an external parameter, such as the magnetic field in
spin systems1 or the intensity of a laser beam in cold atom simulators of Hubbard-like models2. In all

current studies of QPTs, the external parameter is assumed to be classical, i.e., it has a well-defined instantaneous
value. However, the field inducing a QPT can be quantum as well, taking on different values by virtue of being in a
superposition of states. In fact, tremendous progress with the preparation and manipulation of cold atom/ion
systems will allow for creation of scenarios where the quantum nature of the ‘‘external’’ parameter will play a
central role.

For instance, cavity-QED systems offer intriguing possibilities to study quantum control parameters3–5. In
these systems, photons – bouncing off two parallel mirrors – interact with ultracold atoms. If the number of
photons in the cavity does not fluctuate, atoms experience an ‘‘external’’ periodic potential cos2(kx), whose
amplitude is proportional to the number of intra-cavity photons (k is the photon wave-vector). Atoms in such
a system would be either in the superfluid phase or in the Mott insulator phase2. It may be possible, however, to
create a coherent superposition of the intra-cavity photonic states, giving rise to quantum fluctuations in the
number of photons between the mirrors. The atoms would then be exposed to a coherent superposition of
periodic potentials with the same period but differing amplitudes. In this case, one can have atoms in a super-
position of two quantum phases, i.e., simultaneously in superfluid and Mott insulator ground states3. Such a
situation has no counterpart in traditional studies of QPTs where the system is either in one phase or another.

An analogous phenomenon can be envisioned in central spin models. These models are used to describe qubit –
environment interactions in nitrogen-vacancy centers in diamond6, quantum dots in semiconductors7,8, NMR
experiments9, etc. The focus is typically on the loss of coherence of the qubit while ignoring the environmental
degrees of freedom. We will take the opposite perspective and explore the quantum state of the environment
subjected to an effective quantum potential originating from the central spin. For an experimental study of such a
scenario, one needs a well-controlled system, which we expect will be delivered in the foreseeable future by ion
simulators of spin chains10,11.

Results
The model. We will discuss the most striking consequence of a QPT in a quantum potential: The possibility of
having the system in a superposition of ground states belonging to different phases, as shown in Fig. 1. We
consider a quantum Ising chain uniformly coupled to a (central) spin-1/2 (Fig. 2):
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where N?1 is the number of spins arranged on a periodic ring. The
central spin contribution is contained in the effective magnetic field
operator

ĝ~gzdsz
S, ð2Þ

where g is the (classical) magnetic field strength and dsz
S is the

quantum component of the field generated by an Ising coupling to
the central spin (0vd=1). Without the coupling to the central spin,
i.e., when Ĥ g,d~0ð Þ:ĤI gð Þ, the Ising chain in the ground state is
either in the ferromagnetic phase (jgj , 1) or in the paramagnetic
phase (jgj . 1), with critical points at gc 5 61. We consider below
g.0.

The successful implementation of a recent proposal simulating
arbitrarily-connected spin models in linear ion chains11 will put the
system we consider within experimental reach. It is interesting to
note that there is no need to arrange ions, i.e., effective spins, on the
ring to simulate the Hamiltonian (1), see Fig. 2(a). So far the simu-
lation of an N 5 6 Ising chain with long-range interactions between
the effective spins-1/2 has been demonstrated12, analogous to that

shown in Fig. 2(b). The proposal is scalable and it is expected to allow
for quantum simulation of models with N?1 effective spins.

Preparation of the superposition state. QPTs can be studied either
by diagonalizing the Hamiltonian for a fixed set of coupling
parameters or by adiabatically evolving the system from an easy-
to-prepare ground state, which is especially relevant in cold atom
experiments2. We take the latter approach, as the former will always
force the central spin to point in either 1z or 2z direction for any g ?
0 because Ĥ,sz

S

� �
~0.

We assume that at t 5 ti the chain is prepared in a ground state and
its coupling to the central spin is turned off, which provides freedom
to engineer the state of the central spin. The composite wave function
is jy(g(ti))æ 5 jSæjg(ti)æ, where jgæ is a ground state of ĤI gð Þ and the
central spin state is

Sj i~c:eiw: tið Þ :j izc;eiw; tið Þ ;j i, c2
:zc2

;~1,

where c",#. 0. By changing both the bias field g and the coupling d,
the wave-function evolves according to

y g tð Þð Þj i~T̂ exp {i
ðt

ti

dt Ĥ g tð Þ,d tð Þ½ �
� �

y tið Þj i,

where T̂ is the time-ordering operator.
As was shown in Ref. [13], jy(g(t))æ can be simplified. Considering

adiabatic evolution, we obtain

y g tð Þð Þj i~eiw: tð Þc: :j i gzdj izeiw; tð Þc; ;j i g{dj i: ð3Þ

We thus study finite, i.e., gapped, systems so that adiabatic evolution
is possible by changing g(t) and d(t) slow enough. In the state (3), the
chain experiences an average magnetic field

ĝh i~gzd c2
:{c2

;

� 	

with fluctuations ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝ2h i{ ĝh i2

q
~2dc:c;:

In particular, this shows that once the desired coupling d is adiabat-
ically reached, fluctuations of the quantum potential are fixed.

The state (3) is already a Schrödinger’s cat state, where the two
‘‘macroscopically’’ distinct possibilities are the ferromagnetic and
paramagnetic phases, both of which are coupled to the auxiliary
two-level system. Since we are interested in the QPT of the Ising
chain, we will ‘‘trace out’’ the central spin by measuring its state. If
we will do the measurement in the {j"æ, j#æ} basis, the superposition
will be destroyed and the state of the Ising chain will be one of the
ground states jg 6 dæ. Measurement in any other basis will result in a
superposition of Ising ground states at different magnetic fields.

We assume that the measurement will be done in the eigenbasis of
the sx

S operator:

zj i~ :j iz ;j iffiffiffi
2
p , {j i~ :j i{ ;j iffiffiffi

2
p :

In this basis,

y g tð Þð Þj i~ zj i c:eiw: gzdj izc;eiw; g{dj iffiffiffi
2
p z

{j i c:eiw: gzdj i{c;eiw; g{dj iffiffiffi
2
p ,

where we write w#," as shorthand for w#,"(t). Therefore, the mea-
surement of the central spin in the state j6æ leaves the chain in the
state

Figure 1 | Schematic of a superposition of two different quantum phases
in an Ising chain. In the paramagnetic phase spins try to align with the

classical magnetic field, which is oriented in the z direction here. In the

ferromagnetic phase spin interactions try to align spins perpendicular to

the field; see the Hamiltonian (1) for details. One can prepare such a state

by adiabatically evolving the chain in the presence of a central spin followed

by a measurement of the spin.

Figure 2 | Schematics of potential spin arrangements. (a) The central

spin model in a classical magnetic field: The central spin is equally coupled

to all the spins-1/2 arranged on a ring. (b) Possible realization of the central

spin model in a linear ion chain. The ions emulate the effective spins-1/2.

The couplings between the effective spins-1/2 are optically engineered to be

the same as in the (a) panel. One of the ions is differently coupled to the rest

of the chain to play the role of the effective central spin. The effective

magnetic field is also optically engineered.
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c:eiw: gzdj i+c;eiw; g{dj iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+2c:c; cos w:{w;

� �
F g,dð Þ

q , ð4Þ

where F g,dð Þ~ g{d gzdjh i is a ground state fidelity14, or simply
fidelity, whose crucial role in this problem will be carefully discussed
below. Without loss of generality, we define it in such a way that
F g,dð Þw0.

Now we comment on the measurement of the central spin. The
state j6æ will occur with probability

P+ w:{w;

� �
~

1
2
+c:c; cos w:{w;

� �
F ,

which depends on the relative phase between the ground states in
the superposition (3). Since the point of the measurement is to
prepare a well-defined superposition state of the Ising chain, we
will describe properties of the Ising chain after finding the central
spin in, e.g., the j1æ state. Then, the Ising chain will be in the
state

Isingj i~ c:eiw: gzdj izc;eiw; g{dj iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z2c:c; cos w:{w;

� �
F g,dð Þ

q : ð5Þ

This state is the desired superposition of ferromagnetic and para-
magnetic ground states when

g{dvgcvgzd,

which is depicted in Fig. 1. We propose to call such a state a
Schrödinger magnet. The possibility to create such a novel state of
matter is offered by the quantum magnetic field in Eq. (2). Indeed, if
there would be no quantum component in the magnetic field, the
wave function of the Ising chain after the adiabatic evolution would
correspond to either a ferromagnetic or a paramagnetic phase
ground state, but never to a superposition of both.

Ising chain in the superposition state. For simplicity, we assume
that the measurements on the Ising chain are performed immediately
after measuring the central spin. The expectation value of an
operator Ô in the state (5) is

O~ Ising Ô
�� ��Ising

� 

~

Osz2c:c; cos Dð ÞOz{

1z2c:c; cos Dð ÞF , ð6Þ

where D 5 w" 2 w# and

Os~c2
:Ozzzc2

;O{{, O++~ g+d Ô
�� ��g+d

� 

,

is the ‘‘standard’’ average, and

Oz{~ gzdh jÔ g{dj i

designate the cross term that arises. For clarity of presentation, we
restrict ourselves to real O12 in Eq. (6), because O12 is always real for
the operators Ô~sz

n, sx
n, sx

nsx
nz1 that we study. It is not real,

however, for all operators (e.g., for Ô~sy
n), and it is a

straightforward exercise to extend our calculations to these cases.
While the standard average does not yield any new information,
the cross term provides a non-trivial correction absent in a
quantum phase transition in a classical field.

To further simplify the discussion, we average Eq. (6) over several
realizations where the appearance of the relative phase D of the
superposition (3) is given by some probability distribution p(D).
For example, such averaging may appear due to preparation of the
central spin with random initial phases w",# (ti). We assume below for

simplicity that p Dð Þ~ 1
2p

for D g [0, 2p). We denote the result of

such averaging as O, and define its variance through var Oð Þ~
O2{O

2
. Finally, we introduce the notation

Oz{
F ~Oz{=F ,

because for the operators Ô that we consider, Oz{
F are well-defined

non-zero quantities in the thermodynamic limit in which fidelity
typically tends to zero (see the Discussion section).

The phase-averaged observable and its variance are

O~

Ð 2p
0 dDp Dð ÞPz Dð ÞOÐ 2p

0 dDp Dð ÞPz Dð Þ
~Os,

var Oð Þ~
Ð 2p

0 dDp Dð ÞPz Dð ÞO2Ð 2p
0 dDp Dð ÞPz Dð Þ

{ Osð Þ2

~ Os{Oz{
F

� �2 1ffiffiffiffiffiffiffiffiffiffiffiffi
1{x2
p {1

� �
,

with x~2c:c;F . By expanding
1ffiffiffiffiffiffiffiffiffiffiffiffi

1{x2
p {1<

x2

2
,

we see that the square root of variance is proportional to fidelity when
x=1. The role of fidelity in our problem is discussed in the
Discussion section. In the following, we use the exact solution of
the Ising model to study expectation values of different observables
in the superposition state (5), see the Methods section for details.

We start by looking at Ô~M̂z~sz
n. M++

z terms have been calcu-
lated in Ref. [15]

M++
z ~

1zg+d

p g+dð Þ E x+

� �
z

{1zg+d

p g+dð Þ K x+

� �
,

where x6 5 4(g 6 d)/(1 1 g 6 d)2, and K and E are elliptic functions
of the first and the second kind, respectively. Above a large N limit is
assumed to simplify the expressions (see the Methods section for the
exact finite N expressions).

The cross terms can be obtained from the eigenequation

ĤI g+dð Þ g+dj i~Ne g+dð Þ g+dj i, ð7Þ

where e is the ground state energy per spin15. Indeed, one gets from it

Mz{
z ~F g,dð Þ e g{dð Þ{e gzdð Þ

2d
:

In the limit of NR‘, e g+dð Þ~{
2
p

1zg+dð ÞE x+
� �

. Consequently,

Mz{
zF ~

1zgzd

pd
E xz

� �
{

1zg{d

pd
E x{ð Þ:

The dependence of magnetization on the relative phase of the super-
position and the variance of magnetization at g 5 1 are depicted in
Fig. 3.

We mention in passing that similar expressions can be obtained
for Ô~Ĉx~sx

nsx
nz1. Indeed, it is known from Ref. [15] that

C++
x ~

1zg+d

p
E x+
� �

z
1{g+d

p
K x+

� �
,

and one can use again Eq. (7) to derive

Cz{
x ~

F g,dð Þ
2

g{d

d
e gzdð Þ{ gzd

d
e g{dð Þ

� �
:

Since these results are analogous in structure to the ones already
discussed, we will not analyze them.

Next, we study spontaneous magnetization in the x-direction. The
system will acquire such a magnetization when a tiny field brea-
king the sx

n?{sx
n symmetry of the Hamiltonian is present. When

www.nature.com/scientificreports
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necessary, we thus add a {h
P N

n~1sx
n term to ĤI gð Þ and denote a

ground state of the resulting Hamiltonian as jg, hæ. Without the
quantum magnetic field, d 5 0, the Ising chain acquires macroscopic
magnetization (along the direction of the symmetry breaking field h)
only in the ferromagnetic phase. This magnetization can also be
calculated by studying the correlation function15

lim
R??

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh jsx

1sx
R gj ij j

q
~ lim

h?0z
g,hh jsx

n g,hj i~ 1{g2
� �1=8

:

Importantly, it encodes the critical exponent b 5 1/8 (see Ref. [16]).
To study spontaneous magnetization in the presence of the super-

position of ground states, we find numerically the states jg 6 d, hæ
using a periodic version17 of the TEBD algorithm18,19. Then, we
calculate M++

x ~ g+d,hh jsx
n g+d,hj ijh<0 and Mz{

x ~ gzd, hh jsx
nj

g{d,hijh<0. Naturally, for large enough systems, the standard result
is reproduced by numerics:

M++
x ^ 1{ g+dð Þ2

� �1=8

for jg 6 dj , 1 and zero otherwise. The results of TEBD cal-
culations are plotted in Fig. 4. The presence of the cross term
magnetization, resulting from the superposition of two ground
states in Eq. (5), leads to sizable deviations from the ‘‘standard’’
average.

To analyze this deviation more efficiently in the thermodynamic
limit, we study the asymptotic behavior of the two-point correlation
functions:

Mz{
xF ~ lim

R??

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx

1sx
1zR

� 
z{

F

��� ���,
r

ð8Þ

where � � �h iz{
F ~ gzdh j � � � g{dj i=F . It can be done using the exact

solution of the Ising model through fermionization, where we
express the correlator as a determinant of a 2R32R block Toeplitz
matrix, which is then numerically evaluated (see the Methods section
for details).

As shown in Fig. 5, we find that the scaling of Mz{
x around the

critical point is consistent with the ansatz

Mz{
x ~FdbB cð Þ, c~

g{gc

d
, ð9Þ

where b 5 1/8 and gc 5 1 for the Ising chain that we study, and B(c) is
the scaling function. It is nonzero when at least one of the superposed
ground states is in the ferromagnetic phase, i.e., B(c) ? 0 for c , 1.
Far away from the critical point, we observe that Mzz

x <M{{
x <

Mz{
xF and so B c={1ð Þ^ {2cð Þ1=8.

Discussion
We have seen that the presence of the quantum external field allows
for creation of the superposition state of two distinct ground states in
general and two distinct phases in particular. If this happens,

Figure 4 | Spontaneous magnetization in the x-direction in a quantum
superposition of different phases. The red dashed line is the ‘‘standard’’

average Ms
x~c2

:Mzz
x zc2

;M{{
x . The shaded area between the solid green

lines marks the range of variation of Mx due to variation of the relative

phase w"2 w# (similar variation, but at a single magnetic field g, is depicted

in Fig. 3). This is a numerical result obtained with the ‘‘periodic’’ TEBD

algorithm for d 5 0.05, h 5 0.0001, c:~c;~1
� ffiffiffi

2
p

, N 5 100, and x 5 50

(the cut-off parameter of the algorithm). The spontaneous magnetization

does not disappear for g . 1 1 d, when both states in the superposition are

in the paramagnetic phase, due to the non-zero symmetry-breaking field h

(see Fig. 5 for the h R 01 and N?1 limits; see the Methods section for

details).

Figure 5 | Scaling properties of the spontaneous magnetization cross
term in the x-direction (9). Upper panel: Illustration that Mz{

xF g,dð Þ at

the critical point g 5 gc 5 1 scales as d1/8. Crosses show numerics based on

Eq. (8), while the straight line is a fit. The same result is obtained near the

critical point for other c 5 (g 2 gc)/d and g , 1 1 d. Lower panel:

Illustration of the scaling function B(c) near the critical point and far away

from it. Crosses show numerics, the solid line connects them, and the

dashed line is (22c)1/8. See the Methods section for details.

Figure 3 | Mean magnetization along the z-direction in a quantum
superposition of different phases, Ô~M̂z~sz

n. The plot shows exact

results obtained from expressions listed in the Methods section. The solid

line shows Mz evaluated from Eq. (6), the dashed line shows Mz~Ms
z , and

the dashed-dotted line shows Mz+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Mzð Þ

p
. We assumed N 5 100, d 5

0.05, c" 5 1/2, c;~
ffiffiffiffiffiffiffi
3=4

p
, and g 5 1. For these parameters F<0:41,

Mz<6:0|10{1, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Mzð Þ

p
<8:9|10{3.
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expectation values are altered by the cross terms. The magnitude of
this effect can be sizable as depicted in Figs. 3 and 4.

A fundamentally important question can now be answered: What
is the role of the system size in a quantum phase transition in a
quantum field and what critical information is imprinted onto the
cross terms.

To answer it, we note that all the cross terms that we studied are a
product of the two terms: The ground state fidelityF g,dð Þ and a term
that has a well-defined non-zero value in the thermodynamic limit.
Ground state fidelity, however, typically disappears in the ther-
modynamic limit of N R ‘ often invoked in the context of quantum
phase transitions.

This is known as Anderson orthogonality catastrophe after the
seminal work reported in Ref. [20]. Therefore, we are interested in
the studies of systems for which N?1 (to see quantum criticality),
but still N , ‘ (to avoid the catastrophe). There are three options
here, which we will discuss below. Instead of providing specific
results for fidelity of the Ising chain, we provide general scaling
results to highlight the role of critical exponents in our problem
and to keep the discussion concise.

First, one can consider the limit of d R 0 taken at fixed N ? 1.
Then, fidelity reads21–23

lnF g,dð Þ*{d2N2=dn ð10Þ

near the critical point. Here, d is system dimensionality and n is the
critical exponent (correlation length diverges as jg 2gcj2n near the
critical point; d 5 n 5 1 in the Ising chain that we consider). Since
fidelity is close to unity in this limit, the cross terms do not get small.
One must remember, however, that they will be dominated by finite
system size corrections requiring a separate study, which is beyond
the scope of this work.

Second, in the limit of N R ‘ at fixed d – the one that we assumed
in our calculations – one can focus on the ‘‘moderately’’ large sys-
tems. To explain this term we note that near the critical point (in the
above-mentioned limit)24

lnF g,dð Þ*{Nddn: ð11Þ

The crossover from Eq. (10) to Eq. (11) happens near the critical
point when24

Nddn*1:

We define the ‘‘moderately’’ large system to be just large enough to
exhibit the scaling of fidelity with d and N given by Eq. (11) rather
than Eq. (10). In the Ising case, Eq. (11) predicts lnF*{Nd while
Eq. (10) predicts lnF*{N2d2. For a ‘‘moderately’’ large system
fidelity shall not be too small to erase the contribution of the cross
term (see, e.g., Fig. 4).

Third, one can study superpositions of two ground states from the
same phase far away from the critical point. There lnF*
{Nd2 g{gcj jdn{2, and for N ? 1 fidelity can be kept close to unity
by a proper choice of d. The downside of this scenario is that we loose
the possibility to superimpose two phases.

From the above discussion, we see that the critical exponent n is
imprinted onto the cross term via fidelity. Also the critical exponent
b is seen in the cross term Mz{

x contributing to spontaneous mag-
netization. The location of the critical point is most directly seen in
the cross terms Mz{

z and Cz{
x through ‘‘divergence’’ of their sec-

ond derivative over g taken at gc 6 d. This is caused by the singularity
of the second derivative of the ground state energy per spin across the
critical point. This singularity will be rounded off in finite systems
(N , ‘), but nevertheless there shall be pronounced peaks visible.
We also note that while the ‘‘standard’’ averages Ms

z and Cs
x also

encode the position of the critical point, they do not encode the
critical exponent n.

To observe the superposed phases, experiments will have to keep
decoherence to a minimum. The decoherence rate of the state in Eq.

(5) will depend on how well the environment distinguishes the two
components, which will depend on the system size (see, e.g., Ref.
[25]) and the overlap between the two states (fidelity). Thus, N can-
not be too large and F cannot be too small. This is a similar issue to
being able to observe the effect of the cross term, which we discussed
above. We thus do not expect decoherence to be overwhelming in a
properly prepared setup. Further, the system size can be used as a
parameter controlling decoherence, and its manipulation should be
sufficient to bring decoherence down to an acceptable level. Looking
from a different perspective, studies of decoherence of such a novel
macroscopic quantum superposition are fundamentally interesting
on its own, e.g., to boost understanding of the quantum-to-classical
transition.

To conclude, we considered a quantum phase transition of an
Ising chain exposed to a quantum external field. This scenario can
be used to create a new state of matter where the system is simulta-
neously in two distinct quantum phases. Observables on the chain
then take on forms that encode the ground state fidelity, the location
of the critical point, and the universal critical exponents of the sys-
tem. These findings set the foundations for developing a scaling
theory of quantum phase transitions in quantum fields. Recent
advances in cold atom cavity-QED and ion traps may lead to experi-
mental realization of superposed phases.

Methods
We provide here some technical details regarding our calculations.

The Ising Hamiltonian ĤI gð Þ is diagonalized using the standard approach (see e.g.
Ref. [26]). The Jordan-Wigner transformation,

sz
n~1{2ĉ{nĉn, sx

n~ ĉnzĉ{n
� �

P
mvn

1{2ĉ{mĉm
� �

,

where ĉn are fermionic annihilation operators, transforms the Ising chain to a free-
fermion model. After applying the Fourier transform

ĉn~
e{ip=4ffiffiffiffi

N
p

X
k

ĉkeikn,

the Hamiltonian takes the form:

ĤI gð Þ~
X

k

2ĉ{k ĉk{1
� 	

g{ cos kð Þz ĉ{k ĉ{{kzĉ{kĉk

� 	
sin k,

k~+ 2sz1ð Þ p
N

, s~0, . . . ,
N
2

{1:

Diagonalization of the Hamiltonian with the help of the Bogolubov transformation
leads to the following ground state wave-function

g+dj i~ P
kw0

cos h+
k

�
2

� �
0k0{kj i{ sin h+

k

�
2

� �
1k1{kj i

� �
,

where jmk, m2kæ describes the state with m 5 0, 1 pairs of ck quasiparticles with
momentum k and

tan h+
k ~

sin k
g+d{ cos k

:

To prepare Fig. 3, we fix the system size N and use the following exact expressions
for magnetization and fidelity

M++
z ~ g+dh jsz

n g+dj i~ 1
N

X
k

cos h+
k ,

Mz{
z ~ gzdh jsz

n g{dj i~F
N

X
k

cos
hz

k zh{
k

2

cos
hz

k {h{
k

2

,

F~ gzd g{djh i~ P
kw0

cos
hz

k {h{
k

2

� �
w0:

To prepare Fig. 4, we select g, d and h, and calculate the ground states jg 6 d, hæ of
the Ising chain exposed to transverse and longitudinal magnetic fields. This is done
through imaginary time evolution performed with the periodic TEBD algorithm. A
global phase of the wave-functions is then chosen to make F~ g{d,hjgzd,hh i
positive. We then directly calculate M++

x and Mz{
x (both are positive). Putting these

results into Eq. (6), one can calculate the spontaneous magnetization in the x-
direction in the superposition state (5). The result is still dependent on the relative
phase w"2 w#. When this phase is either 0 or 6p, spontaneous magnetization at any
fixed g, d, and h reaches an extremum. These extremal values are depicted by solid
green lines in Fig. 4.
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To prepare Fig. 5, we calculate correlation function

Cz{
xx Rð ÞF~ sx

1sx
1zR

� 
z{

F

��� ���~ PR
i~1 b̂i âiz1

D Ez{

F

��� ���,
where we introduce b̂n~ĉ{n{ĉn and ân~ĉ{nzĉn . We study it, because Mz{

xF ~

limR??
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cz{

xx Rð ÞF
p

.
The next step is to use Wick’s theorem extended to such a cross-correlation27. It can

be used as long as the overlapF is nonzero, which is the case in our calculations. Then
extending the results of Ref. [28], we find that Cz{

xx Rð ÞF can be expressed as a Pfaffian
of a 2R32R antisymmetric matrix, which can be converted into a determinant:

Cz{
xx Rð ÞF~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det AR½ �

p
,

AR~

b̂mb̂n

D Ez{

F
b̂mânz1

D Ez{

F

âmz1b̂n

D Ez{

F
âmz1ânz1h iz{

F

2
664

3
775

m,n~1...R

,

where AR is a block Toeplitz matrix. Apart from a few special cases, it is not known
how to calculate such a determinant analytically29. Thus, we use numerics with a large
enough R to obtain a well-converged result. We employ a continuous (i.e. N R ‘)
approximation for the elements of the Toeplitz matrix

âmânh iz{
F ~

{i
2p

ðp
{p

dk tan
hz

k {h{
k

2
eik m{nð Þ,

b̂mân

D Ez{

F
~

{1
2p

ðp
{p

dk
e{i hz

k zh{
kð Þ=2

cos
hz

k {h{
k

2

eik m{nð Þ,

and âmânh iz{
F ~ b̂mb̂n

D Ez{

F
, âmb̂n

D Ez{

F
~{ b̂nâm

D Ez{

F
. Regarding the para-

meter R, we mention that it has to be of the order of 500 (2000) for g 5 0.995 and d 5

0.01 (g 5 1.005 and d 5 0.01) in order for the results to be converged to the R R ‘

limit. For every g and d sufficiently large R is chosen to calculate data for Fig. 5.
We also mention that we verified the Pfaffian-based numerics with a direct

numerical calculation using the TEBD algorithm. For systems composed of about 100
spins, for which the TEBD algorithm can still be efficiently applied, spontaneous
magnetization from both calculations agree.

Finally, we provide definition of the elliptic functions that we use in the Results
section:

K xð Þ~
ðp=2

0

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{x sin2 w

p , E xð Þ~
ðp=2

0
dw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{x sin2 w

p
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QED with a Bose-Einstein condensate. Nature 450, 268 (2007).

6. Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D.
Coherent dynamics of a single spin interacting with an adjustable spin bath.
Science 320, 352 (2008).

7. Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear
bath exceeding 200 ms. Nature Physics 7, 109 (2011).
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