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Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that
endows quantum microstates with macroscopic consequences, key to the “collapse of the wave packet,”
and a way to avoid embarrassing problems exemplified by Schrödinger’s cat. Such a bridge between the
quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen
interpretation. Quantum Darwinism views amplification as replication, in many copies, of the information
about quantum states. We show that such amplification is a natural consequence of a broad class of models
of decoherence, including the photon environment we use to obtain most of our information. This leads
to objective reality via the presence of robust and widely accessible records of selected quantum states.
The resulting redundancy (the number of copies deposited in the environment) follows from the quantum
Chernoff information that quantifies the information transmitted by a typical elementary subsystem of the
environment.
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Building on the theory of decoherence [1–3], quantum
Darwinism is a framework to go beyond the Copenhagen
interpretation and “bridge” the quantum-classical divide
[4]. It recognizes that the environment acts as a commu-
nication channel for information about a system of interest,
S. Observers acquire information indirectly by intercepting
a fragment F of the environment E, such as scattered
photons, as happens in everyday life (see Fig. 1). This is
possible because correlations are created between S and E
when they interact. They can be quantified by the quantum
mutual information IðS∶F Þ ¼ HS þHF −HSF , where
HA ¼ −trρAlog2ρA are the von Neumann entropies.
Correlations between elusive quantum states, when ampli-
fied, dependably lead to “objective classical reality.” In this
Letter, we prove that a broad class of photon and photonlike
environments always amplify information.
The quantum mutual information is naturally divided

into classical and quantum contributions [6]—the Holevo
quantity [7,8] and quantum discord [9–11], respectively.
Here, we will focus on the Holevo quantity and hence the
information accessible via E about the system S—about its
pointer observable [12] Π̂S ¼ P

ŝπŝjŝihŝj,

χðΠ̂S∶F Þ ¼ H

�X
ŝ

pŝρF jŝ

�
−X

ŝ

pŝHðρF jŝÞ: (1)

The Holevo quantity upper bounds the classical informa-
tion (information about the pointer states [6,13]) transmit-
table by a quantum channel (here, the environment), as
well as lower bounds the quantum mutual information,
IðS∶F Þ ≥ χðΠ̂S∶F Þ. In this expression, ŝ ¼ 1;…; DS
labels the pointer states, pŝ are their probabilities, and

ρF jŝ ¼ hŝjρSF jŝi=pŝ are the “messages” about S trans-
mitted by F—the fragment state conditioned on the
system’s pointer state ŝ. We will focus on the case where
S is two dimensional, although the overall conclusions
hold for higher dimensions.
For information to be objective—and therefore for the

quantum world to conform to our everyday experience—
many observers should be able to access it independently
[13,14]. The missing information about S is quantified by
its entropy HS, and this information must be redundantly
proliferated into the world for it to be objective. In other
words, each observer should only need a small fragment
of the environment to retrieve it. This will allow many obs-
ervers to independently determine the state of the system,
and reach consensus about it, accounting for the emergence
of objective classical reality in the quantum Universe. More
precisely, the number of fragments of the environment that
contain sufficient information about S can be deduced
starting from the condition

hχðΠ̂S∶F Þi♯F δ
≅ ð1 − δÞHS; (2)

where h·i♯F δ
designates an average over fragments of

size ♯F δ and HS ¼ HðΠ̂SÞ, i.e., the entropy of the system
is the entropy of the pointer observable when the system
is decohered. The fragment size ♯F δ is the number of
subsystems of the environment (e.g., the number of
scattered photons or the number of two level systems)
needed for an observer to acquire ð1 − δÞHS bits of
information, on average, about S. The information deficit,
δ, is the information observers can forgo; e.g., observers
may be satisfied with 90% (δ ¼ 10−1) of the missing
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information. The number of copies proliferated into the
environment defines the redundancy (the “gain”, the figure
of merit for amplification) via

Rδ ¼
♯E
♯F δ

; (3)

where ♯E is the size the environment.
When environments select, but do not perturb, a definite

pointer observable of a system, we shall say that E purely
decoheres S. These situations are characterized by the
Hamiltonians

H ¼ HS þ Π̂S

X♯E
k¼1

ϒk þ
X♯E
k¼1

Ωk (4)

with ½Π̂S;HS� ¼ 0 and initial states

ρð0Þ ¼ ρSð0Þ ⊗
�
⊗
♯E

k¼1
ρkð0Þ

�
; (5)

where k specifies an environment subsystem [15–17]. In
this scenario, no transitions are generated between the
pointer states ŝ (the eigenstates of Π̂S [2,12]). The system
can still interact with ♯E independent environment sub-
systems with arbitrary, and potentially different, interaction
operators Υk and self-Hamiltonians Ωk.
The Hamiltonian, Eq. (4), is exact in the case of

some central spin models [2,12] and can be regarded as
a limiting form of one where ½HS; Π̂S� ≠ 0 but the system’s
evolution (through HS) occurs slowly on the time scale it
interacts with the environment. Such a condition is broadly
true in our everyday world, as objects are rapidly decohered
by collisions with air molecules and/or photons [3,18].
Moreover, independence of the environment subsystems
is satisfied essentially exactly for the photon environment,
and approximately when the relevant time scales are much
faster than the mixing time of the environment [19]. We
assume independence as a simplification, as it is thought to
be approximately necessary for preserving the redundancy
of information. In the following, we will prove that it is
sufficient.
To estimate Rδ, we will apply three inequalities and take

♯F δ → ∞. The first inequality is Fano’s [8,20] for DS ¼ 2,
which gives the lower bound

χðΠ̂S∶F Þ ≥ HS −HðPeÞ; (6)

where Pe, a function of F , is the error probability to
distinguish the conditional states ρF jŝ. For practical pur-
poses, one could easily substitute the right-hand side in
Eq. (6) in the definition for redundancy. However, retaining
Eq. (2) in the definition of redundancy will result in the
Fano inequality leading to a lower bound to Rδ. The second
inequality is that established in Ref. [21],

tr½AcB1−c� ≥ tr½Aþ B − jA − Bj�=2 (7)

for two positive operators A and B and 0 ≤ c ≤ 1. This
inequality was used to prove one side of the quantum
Chernoff bound (QCB) [21–23], which generalizes the
classical Chernoff bound to sources of independent and
identically distributed (i.i.d.) quantum states. Using Eq. (7),
we can upper bound the optimal error probability—from
the Helstrom measurement [24]—for distinguishing the
DS ¼ 2 states generated on the fragment as

Pe ≤ P⋆
e ¼ pc

1p
1−c
2

Y
k∈F

tr½ρckj1ρ1−ckj2 �; (8)

where ρkjŝ are the subsystem’s state conditioned on the ŝ
pointer state of S. Here, the conditional subsystem states
are independent, but not identically distributed (i.e., they
are not i.i.d.). Using P⋆

e in Eq. (6) will further lower bound
the accessible information, and thus further lower boundRδ.
The third inequality is HðP⋆

eÞ ≤ P⋆
e= ln 2 − P⋆

e log2P⋆
e [25].

FIG. 1 (color online). Quantum Darwinism, photons, and the
emergence of objective classical reality. A quantum system,
S, initially in a nonlocal superposition, is illuminated by the
environment, E, composed of many distinct subsystems (photons)
that can be lumped into fragments F . While E decoheres S, it
acquires many copies of information about S that become
available to observers who can then independently infer the state
of the preferred (pointer) state of the system without perturbing
S by direct measurements. This redundant imprinting of records
is responsible for the consensus between observers that is
essential for the emergence of “objective classical reality” in
our quantum Universe. For the familiar photon environment, the
redundancy (which quantifies amplification) can be enormous:
A dust grain 1 μm across exposed to sunlight for just 1 μs will
have its location (to an accuracy of 1 μm) recorded about 108

times in the scattered photons [5].
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Wewant to determine the relationship between ♯F δ and δ
that follows from Eq. (2), which requires averaging over
fragments of the same size. In principle, this could be
difficult if one attempts to optimize the bound in Eq. (8)
by minimizing over c, as c can depend on F . There are
important cases where the optimum c is independent of F ,
such as the photon environment below, spin-1/2 environ-
ments, and environments with a pure initial state. Moreover,
for the purposes of bounds one does not have to do any
minimization, as one can take any c, e.g., c ¼ 1=2. Hereon,
we will take c as a constant. Averaging Eq. (8) over
fragments of size ♯Fδ, then taking the logarithm and limit
♯F δ → ∞ [26], one obtains

− lim
♯F δ→∞

1
♯F δ

lnhPei ≥ − lnhtr½ρckj1ρ1−ckj2 �ik∈E ≡ ξ̄QCB: (9)

We have introduced a “typical” Chernoff information ξ̄QCB,
which is averaged over all subsystems k in E [27]. Now we
need to do the same averaging and limit in order to connect
♯F δ and δ. Using Eq. (2) with the three inequalities, we have

δHS ≤ hP⋆
e= ln 2 − P⋆

e log2P⋆
ei♯F δ

: (10)

When ♯E → ∞, one obtains for the averaging hP⋆
e= ln 2−

P⋆
e log2P⋆

ei♯F δ
¼ gð♯F δÞ exp ½−ξ̄QCB♯F δ�, where gð♯F δÞ is a

function with the property lim♯F δ→∞½ln gð♯F δÞ�=♯F δ ¼ 0.
Taking the logarithm and the limit ♯F δ → ∞ yields

r ≥ ξ̄QCB; (11)

where r ¼ lim♯F δ→∞;♯E→∞Rδ ln ð1=δÞ=♯E is a measure of the
asymptotic efficiency of the amplification. In the limiting
process, the extrinsic scales ♯E and δ have been removed from
Rδ, and one is left with r, an intrinsic property of the model.
This lower bound immediately establishes that decoherence
processes given by Eqs. (4) and (5) always redundantly
proliferate information.
In addition to a lower bound for r, we can also find an

upper bound in many cases. Here, we show the result for
i.i.d. states and p1 ¼ p2. This makes use of the upper

bound, χðΠ̂S∶F Þ ≤ Hð½1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðρF j1; ρF j2Þ

q
�=2Þ, where F

is the fidelity [28]. This is further upper bounded by
Hð½1 − 2Pe�=2Þ, which yields [29]

r ≤ 2ξ̄QCB: (12)

This shows that the Chernoff information is the same as r
up to a factor of 2. In the examples we have calculated
(including the photon environment below and spin envi-
ronments), it is the measure of efficiency asymptotically.
In other words, the estimate

Rδ ≃ ♯E
ξ̄QCB
ln 1=δ

; (13)

is exact asymptotically [30]. The close connection between
δ and Pe, together with Pe’s exponential decay, is respon-
sible for the information deficit appearing only weakly in
the redundancy as a logarithm [31]. Equations (11) and (13)
are the main results of our Letter. They demonstrate that
pure decoherence always gives rise to redundant informa-
tion, except for cases of measure zero (e.g., when ρkð0Þ ∝ I
for all k), and give a practical estimate of the redundancy.
Our work connects the physical processes that amplify

information with the quantum Chernoff bound. The ratio
of the number of copies, Rδ, to the number of subsystems,
♯E, of the environment is the efficiency of the copying
process: An environment subsystem is imprinted with
ξQCB= ln ð1=δÞ “bits” of information about S. In this sense,
ξQCB is a measure of the efficiency of the amplification:
When nature consumes ♯E environment subsystems—the
“raw material”—then Rδ ∝ ξQCB

♯E copies of the system—
the final product—are proliferated into the world. Quantum
Darwinism, our discussion suggests, can be regarded as a
new kind of communication channel—an amplification
channel: The same information gets transmitted over and
over again, leading to perception of objective reality.
Now let’s consider an example: a photon environment

decohering a small object initially in a spatial superposition
jψ0

Si ∝ j~x1i þ j~x2i through elastic scattering [3,18,32].
We assume the object is heavy enough that its recoil is
negligible, and that the wavelength of the light is much
longer than the object’s extent. This means that the unitary
governing the joint evolution of the system and environ-
ment is j~x1ih~x1j ⊗ S~x1 þ j~x2ih~x2j ⊗ S~x2when restricted
to the relevant two-dimensional subspace of jψSi, so the
Hamiltonian is indeed of the form in Eq. (4). Here, S~x are
the scattering matrices for a single photon scattering off
the object at position ~x. For thermally distributed radiation
which originates from a blackbody covering an arbitrary
subset B of the unit sphere—the “sky”—S (as viewed from
the object), the redundancy of information, deposited in the
environment, about the position of the object is calculated
in Refs. [5,33,34]. The quantum Chernoff information
yields that result (up to a factor 1þ lnð2 ln 2Þ= lnðδÞ, which
approaches unity as δ → 0) much more compactly and
sheds light on the significance of the different factors that
appear within the redundancy.
The photon momentum eigenstates are naturally broken

into a tensor product of the magnitude and direction of the
momentum. Since the scattering is elastic and recoilless, a
photon’s interaction with the system can only cause mixing
between directional eigenstates inside a subspace of con-
stant energy. This means that the initial thermal mixedness
of the photons does not compete with information acquis-
ition. Note, of course, that shorter wavelengths are more
efficient at distinguishing between positions of the system;
i.e., they have a higher susceptibility. On the other hand
we will see that, compared to the case of illumination by a
point source [5], the angular spread due to the finite size
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of B will make it more difficult to acquire information
regarding the position of the object.
If we discretize the photon directional states jp̂i into bits

with small solid angle ΔA, the initial state of a blackbody
photon k is

ρkð0Þ ¼
Z

∞

0

dpPðpÞjpihpj ⊗ ΔA
AB

X
p̂∈B

jp̂ihp̂j; (14)

where AB is the solid angle covered by B. The distribution
of energy (momentum magnitude) eigenstates jpi is
PðpÞ ∝ p2=½expðpc=kBTÞ − 1� for some temperature T.
Importantly, all the directional eigenstates jp̂i in the
support B are initially equally likely because black-
bodies are Lambertian radiators [35,36]. This means that
the initial state in a fixed-p subspace is in the block
form

hpjρkð0Þjpi ∝
�
I 0

0 0

�
¼ Q; (15)

for projectorQ onto the photon directional eigenstates in B.
Since the spatial position of the object is only recorded
in the direction, not energy, of the outgoing photon, the
unitary scattering operator S~x (conditional on a position
~x of the system) obeys S~xðjpi ⊗ jp̂iÞ ¼ jpi ⊗ ðSp~x jp̂iÞ,
where Sp~x is the operator restricted to a fixed-p subspace.

With Qpj ~xi ¼ Sp~xiQSp†~xi for i ¼ 1, 2, the trace in Eq. (9) is

proportional to

Z
∞

0

dpPðpÞTr ½Qpj ~x1Qpj ~x2 �: (16)

This is independent of c because the Qpj ~xi are projectors
(so Qc

pj ~xi ¼ Q1−c
pj ~xi ¼ Qpj ~xi for c ≠ 0, 1). Thus, this is a case

where the optimization over c can be performed.
We consider ♯E photons in a box of volume V, and then

take ♯E, V → ∞ while holding the number density ♯E=V
fixed to obtain the correct radiation flux. In the position basis,
the off-diagonal elements of the density matrix of the object
are suppressed by the decoherence factor Γ ¼ expð−t=τDÞ.
The decoherence time τD is set by [3,5,18,32]

t
2τD

¼ lim
♯E→∞

♯E
�
1−ΔA

AB
Re

Z
∞

0

dpPðpÞ
X
n̂∈B

hn̂jSp†~x1 S
p
~x2
jn̂i

�
.

(17)

Individual photon momentum eigenstates are diffuse in
the V → ∞ limit, so Sp~x approaches the identity operator.
Ignoring higher order terms which disappear in this limit,
we find for all c that

ln½Trðρckj ~x1ρ1−ckj ~x2 Þ� ≈ Trðρckj ~x1ρ1−ckj ~x2 Þ − 1

¼ ΔA
AB

Z
∞

0

dpPðpÞ
X
n̂∈B

X
m̂∈B

jhn̂jSp†~x1 S
p
~x2
jm̂ij2 − 1

¼ ΔA
AB

Z
∞

0

dpPðpÞ
X
n̂∈B

X
m̂∈B

jhn̂jðSp†~x1 S
p
~x2
− IÞjm̂ij2

− 2

�
1 − ΔA

AB
Re

Z
∞

0

dpPðpÞ
X
n̂∈B

hn̂jSp†~x1 S
p
~x2
jn̂i

�

→ − α
♯E

t
τD

; (18)

where

α ¼
R∞
0 dpPðpÞ RB dn̂ RSnB dm̂jhn̂jðSp†~x1 S

p
~x2
− IÞjm̂ij2R∞

0 dpPðpÞ RB dn̂ RS dm̂jhn̂jðSp†~x1 S
p
~x2
− IÞjm̂ij2 ;

(19)

is the so-called receptivity of the environment to making
records about the system [33]. Its form guarantees that
0 ≤ α ≤ 1. We have made use of the definitions of
τD and ρkj ~xi ¼ S~xiρkð0ÞS†~xi , the completeness relations
I ¼ P

m̂∈Sjm̂ihm̂j, and that
P

n̂∈B ¼ P
n̂∈S −P

n̂∈SnB.
(SnB is the complement set of B inside S.)
Plugging Eq. (18) into Eq. (13), we obtain

Rδ ≃ αt=τD
ln 1=δ

; (20)

which, as δ → 0, is Eqs. (24) and (25) from Ref. [33].
Redundant information is thus generated at a rate of
α=ðτD ln ð1=δÞÞ. The factors involved signify three essential
ingredients of information: ln ð1=δÞ reflects the accuracy of
the information desired by an observer; τD represents that
the environment and system have interacted which simul-
taneously decoheres the system and transfers information;
α is how receptive the environment is to acquiring
information. The redundancy rate thus has a remarkably
simple and transparent form when evaluated using the
quantum Chernoff information.
Conclusions.—We demonstrated how processes that are

ubiquitous in the natural world, such as photon illumina-
tion, amplify selected information about quantum systems.
Photon and photonlike environments give rise to the
redundant proliferation of information regarding pointer
states—they are the mechanism by which one original
becomes many. Information can then be accessed simulta-
neously and independently by many observers. Objective,
classical reality appears as a consequence. The “typical”
quantum Chernoff information, ξ̄QCB, quantifies the effi-
ciency of the amplification, which is strictly positive
except for measure zero scenarios. The resultant amplifi-
cation is huge, as it is linear in the environment size,
♯Eξ̄QCB= ln ð1=δÞ. The information disseminated through
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the environment resides in the states of its individual
subsystems. They allow one to acquire the information
about the pointer states, the “systems of interest” indirectly,
via the fragments of E. This amplification and proliferation
of selected information results in the emergence of (our
perception of) the classical world. The interplay between
information available locally from the environment and its
complement (quantified by quantum discord) explains the
origins of objective reality in a quantum Universe [6,37,38]
and helps delineate the quantum-classical border.
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