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Crossover behavior of the thermal 
conductance and Kramers’ 
transition rate theory
Kirill A. Velizhanin1, Subin Sahu2,3,4, Chih-Chun Chien5, Yonatan Dubi6 & Michael Zwolak2,4

Kramers’ theory frames chemical reaction rates in solution as reactants overcoming a barrier in the 
presence of friction and noise. For weak coupling to the solution, the reaction rate is limited by the 
rate at which the solution can restore equilibrium after a subset of reactants have surmounted the 
barrier to become products. For strong coupling, there are always sufficiently energetic reactants. 
However, the solution returns many of the intermediate states back to the reactants before the 
product fully forms. Here, we demonstrate that the thermal conductance displays an analogous 
physical response to the friction and noise that drive the heat current through a material or 
structure. A crossover behavior emerges where the thermal reservoirs dominate the conductance at 
the extremes and only in the intermediate region are the intrinsic properties of the lattice manifest. 
Not only does this shed new light on Kramers’ classic turnover problem, this result is significant 
for the design of devices for thermal management and other applications, as well as the proper 
simulation of transport at the nanoscale.

Thermal transport is an important process in micro- and nano-scale technologies. It is often in a 
precarious position: On the one hand, thermal management strategies, including the engineering of 
low-resistance interfaces, become increasingly important as elements in electronic devices approach the 
atomic level. On the other hand, phononics – phonon analogues of electronics – seek tunability and 
inherently nonlinear behavior to make functional devices1. Thermal transport is thus at the forefront of 
nanotechnology research. Its impact in a broad array of applications has sparked advanced methods of 
the fabrication, control, and measurement of transport in, e.g., carbon nanotubes and single-molecule 
junctions1–3.

Moreover, thermal transport is at the center of one of the major unresolved puzzles in theoretical phys-
ics, the absence of a derivation of Fourier’s law of heat conduction from a microscopic Hamiltonian4–9. 
This is related to the seminal work of Fermi, Pasta and Ulam (FPU)10–12, which demonstrated that non-
linearity does not always lead to thermalization. The considerations of FPU also apply to the emergence 
of a well-defined thermal conductivity. The role of nonlinearity – in addition to the description of the 
thermal reservoirs and interfacial regions – is thus the central topic of many studies examining thermal 
transport (see refs 5,13,14 for recent reviews).

In this work, we demonstrate that thermal transport goes through three physically distinct regimes 
as the coupling to the surrounding environment – the reservoir that supplies the heat – changes. For 
weak coupling, energy input from the reservoir limits the heat current through the entire system. For 
strong coupling, the lattice dynamics are distorted by the presence of the reservoir and this dominates the 
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conductance. Thermal transport is determined by the intrinsic parameters of the lattice only in the inter-
mediate regime. These three distinct regimes exist regardless of whether the system has a well-defined 
conductivity or not, as we will show by theoretically studying paradigmatic examples of thermal trans-
port5,13,15–17. The dependence of the thermal conductance on the coupling strength to the reservoirs is 
physically analogous to the friction-induced turnover in Kramers’ reaction rate problem for chemical 
reactions in solution.

Results
The first model we examine is a classical one-dimensional (1D) uniform lattice of N harmonic oscillators. 
The Hamiltonian is

∑ ∑ ∑= + + ( − ) ,
( )= = =

+H mx D x K x x1
2 2 2 1n

N

n
n

N

n
n

N

n n
1

2

1

2

0
1

2

where xn is the coordinate of the nth oscillator, m is the mass, D is the strength of the on-site potential, 
and K is the nearest-neighbor coupling constant. The entire lattice is split into three regions: Nr ≥  1 sites 
on the left end (L) and on the right end (R) serve as extended reservoirs as each site (i.e., oscillator) in 
these regions is coupled to its own “external” Langevin reservoir of temperature TL and TR, see Fig. 1(a). 
The friction coefficient γ gives the strength of the coupling to the external reservoirs and is taken to be 
the same on the both ends for simplicity. The remaining N −  2Nr sites in the middle comprise the free 
lattice (F). This is a generalization of a widely used model that sets Nr ≡  113,15,18. In addition to being a 
prototypical model of thermal transport, it is also relevant to realistic systems, such as the high- and 
low-temperature limits of coarse-grained models of DNA19,20, where the on-site potential term represents 
the binding of interstrand base pairs.

Figure 2 shows the thermal conductance, defined as the heat current divided by Δ T =  TL −  TR, for a 
long harmonic lattice with Nr =  100. A detailed description of the calculation is given in the supplemen-
tary information. Three qualitatively distinct regimes, which are labeled (1), (2) and (3), are apparent in 
the figure. We start by examining regime (2), where the conductance depends on γ only very weakly. 
The magnitude of the conductance on this plateau coincides with the intrinsic conductance of the lattice. 
For the anharmonic lattice we consider later on, the intrinsic conductance behaves as ~1/N at large N, so 
there is a well-defined intrinsic conductivity in this plateau region, defined as the conductance multiplied 
by N in the limit N →  ∞.

Intrinsic conductance.  We find the intrinsic conductance of the harmonic lattice by solving an aux-
iliary problem of the heat current between two semi-infinite ballistic (i.e., no friction) lattices. These 
lattices are initially disconnected and equilibrated at respective temperatures TL and TR. When con-
nected, the heat current flowing from left to right is = ∑→

−
>J k T l vL R B L L q q

1
0 , where vq is the group 

velocity of a phonon with momentum q (restricted to phonons moving to the right, i.e., q >  0), kB is 
Boltzmann’s constant, and lL is the length of the left lattice. Essentially, this expression is just the amount 
of classical energy stored in a specific phonon mode in equilibrium (kBTL), multiplied by its group 

Figure 1.  Thermal conductance and Kramers’ transition rate problem. (a) Schematic representation of a 
one-dimensional lattice of length N, with Nr sites on each side connected to independent Langevin reservoirs 
at temperatures TL and TR. (b) Kramers’ problem where noise assists the escape of a classical particle from 
a metastable state. The green contour of the double-well potential outlines the region where the classical 
particle is subject to Langevin dynamics. (c) A modified double-well potential where the barrier is deformed 
horizontally into a region (thick black line) where only ballistic dynamics occurs, i.e., no friction or noise.
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velocity (vq) and the local phonon density of states (1/lL). Similarly introducing JR→L, taking the limit lL, 
lR →  ∞, and defining the total current as J =  JL→R −  JR→L, we obtain the intrinsic conductance as
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where Ω  =  ωmax −  ωmin is the phonon bandwidth. This conductance is also expressible as σ = /v 2q2 , 
where vq is the group velocity averaged over the entire band, which gives additional insight into its form. 
The eigenmodes of the Hamiltonian, Eq. (1), obey ω = + ( / ) /D Ksin q m[ 4 2 ]2 2 , so that ω = /D mmin , 
ω = ( + )/D K m4max , and, therefore, the phonon bandwidth is
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σ
π

=




/ + − /





.

( )
k K

m
D K D K

2
4 4

B
2

The intrinsic conductance is the maximum possible conductance of a harmonic system between two 
equilibrium reservoirs at different temperatures: No matter how much energy the reservoirs can pump 
into the system, the free lattice itself can not usher the energy from source (L) to sink (R) faster than 
the rate allowed by its intrinsic conductance. The magnitude of σ2 is plotted in Fig. 2 (thin dashed line), 
showing an excellent agreement with the numerically calculated conductance in regime (2) (hence the 
subscript of σ2). We also note that decreasing D – the onsite confining potential – and holding all other 
factors fixed increases the conductance, an effect that is observed in models of DNA denaturation19,20. 
This is purely due to the increasing bandwidth.

Casher-Lebowitz formula.  The other two regimes, (1) and (3), become physically transparent when 
using the Casher-Lebowitz formula15 for a single-site reservoir at each end (i.e., Nr ≡  1)
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It is readily seen that the small and large γ expansion of the expression yields σCL ∝  γ and σCL ∝  1/γ, 
respectively. In fact, very general perturbative arguments suggest that these σ ∝  γ and σ ∝  1/γ regimes 
are generic for arbitrary harmonic lattices, as we show in the supplementary information.

Equation (5) is plotted in Fig. 2 as a function of two different arguments: the bare friction coefficient, 
σCL(γ) (red circles), and the scaled friction coefficient, σCL(Nrγ) (blue squares). As is seen in the figure, 
they coincide with numerical results at large and small γ, respectively, which we will now explain.

Figure 2.  The thermal conductance of a harmonic lattice with D/K = 1, Nr = 100, and N → ∞. The 
numerical results are shown as the thick black line. The analytical results for Nr ≡  1, Eq. (5), are plotted as 
σCL(γ) (red circles) and σCL(Nrγ), i.e., the horizontal axis is scaled with Nr (blue squares). The inset shows 
the dependence of σ on N −  2Nr at γ = . mK0 1 .



www.nature.com/scientificreports/

4Scientific Reports | 5:17506 | DOI: 10.1038/srep17506

Small γ regime.  The small γ expansion of Eq. (5) is ∫σ = =γ
π

π γdq qsinCL
k
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B B . This expression 
reflects the fact that energy is pumped in/out of the system via the end sites at a rate proportional to γ, 
and this rate is much smaller (at small γ) than the one the free lattice can carry intrinsically, σ2. At these 
conditions (i.e., kBγ/m ≪  σ2), the heat input by the noise term in Eq. (14) is so inefficient that the system 
has enough time to equilibrate at some global temperature T′. In this quasi-equilibrium state the 
noise-induced heat current entering the left reservoir is = ( − ′)γJ k T TL m B L , and similarly for the right 
reservoir = ( − ′)γJ k T TR m B R . At the steady state J =  JL =  − JR, which yields ′ = +T T T

2
L R , so that the 

conductance of the entire system becomes σ = γk
m2
B , in full agreement with the small-γ expansion of Eq. (5) 

above.
These quasi-equilibrium-based considerations can be straightforwardly generalized to the case of 

extended reservoirs of arbitrary size Nr yielding
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i.e., the heat is pumped into the system at a rate proportional to cumulative friction constant Γ  =  Nrγ. This 
is the reason why Casher-Lebowitz formula (5), once plotted as a function of the cumulative friction con-
stant, σCL(Nrγ), coincides with the numerical results in Fig. 2 at small γ. The agreement between Eq. (6)  
and numerical results in the weak friction regime is emphasized in Fig. 3 where the conductance for a 
range of Nr exactly overlaps with kBΓ /2m at small friction.

Eq. (6) is only valid at sufficiently small Γ . When Γk
m2
B  becomes higher than σ2, the free lattice cannot 

transfer all the heat the Langevin reservoirs are able to supply. At that point, i.e., γ ≈  γ12 =  2mσ2/kBNr 
(marked in Figs 2 and 3), the conductance of the overall system levels off and regime (2) is established.

Large γ regime.  The large γ expansion of Eq. (5) is
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At large γ, the noise term in Eq. (14) can efficiently supply heat to a lattice site. However, this site is 
effectively decoupled from the adjacent sites since the very large friction overdamps its motion resulting 
in the reservoir site becoming “off-resonant” from the rest of the lattice. We will discuss this in detail in 
the next section. Heuristically, however, the efficiency of heat transfer from the reservoir site to the free 
lattice has to be proportional to a phonon group velocity and to a time the reservoir site can stay coherent 
with the rest of the lattice. The latter is given by the decoherence time of an overdamped oscillator, 1/γ, 
so the conductance becomes (averaging over all phonon modes) ∫σ ω ω∝ ( )

γ Ω d vq3
1 . This coincides 

with Eq. (7) up to a constant prefactor.
This heuristic argument is directly applicable to the case of extended reservoirs (Nr >  1). Indeed, the 

reservoir site directly connected to the free lattice is the one that excites phonons in the free lattice and 
the remaining Nr −  1 reservoir sites (on the left or on the right) are decoupled from the lattice by at least 
another order of 1/γ. This entails that the heat conductance is independent of Nr in the large-γ regime, 
which agrees with the numerical results in Fig.  2. When σ3(γ) reaches σ2 as γ decreases to 
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K23 2 2

B

2
 (marked in Fig. 2), there is a crossover from regime (3) to (2). That is, as 

Figure 3.  Comparison of numerical (circles, square, diamonds) and analytical results (dashed lines) in 
the small Γ regime at D/K = 1 for different sizes of extended reservoirs, Nr. 
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γ decreases the reservoir site becomes coherent enough to efficiently transfer heat to the free lattice, so 
the finite intrinsic conductance of the free lattice, σ2, becomes the limiting factor.

The plateau and tilt.  Regime (2) is just a crossover point at Nr =  1 [Eq. (5)], but it becomes a pro-
nounced plateau at Nr ≫  1 as shown in Fig.  3. This is because the position of the crossover between 
regimes (2) and (3), γ23, does not depend on Nr, but the one between regimes (1) and (2), does as 
γ12 ∝  1/Nr. At sufficiently large Nr the two crossovers are thus well separated, establishing a plateau in 
between.

Closer inspection of the numerical results reveals that the “plateau” is in fact tilted, see Fig.  4. The 
linear fit of this tilted plateau yields an intercept with the γ =  0 axis numerically close to σ2 and the slope 
independent (within the fitting accuracy) of any parameters of the lattice.

We demonstrate below that once Nr →  ∞, the conductance becomes σ2 as γ →  0 (the order of taking 
the two limits is important: the limit of Nr →  ∞ is assumed to be taken first, i.e., Γ  =  Nrγ →  ∞). When γ is 
finite, though, the conductance falls off linearly with γ with a universal slope. This tilt can be understood 
via the inhomogeneity of the lattice. For example, connecting lattices that have only partially overlapping 
phonon bands results in a poor conductance due to scattering at the interfaces21. In our situation, the 
phonons in the extended reservoirs and the free lattice are different because of a finite phonon lifetime 
in the former (due to friction) and an infinite lifetime in the latter. Within the extended reservoir, each 
phonon has a spread in frequency δω ≈  γ. This smearing results in imperfectly overlapping bands at the 
band edges, which in turn leads to a decreasing conductance as γ increases.

The more rigorous understanding of the tilt can be achieved by considering phonon scattering at the 
interface between a free lattice and a lattice with uniform friction γ (K and D are the same for both). 
For a phonon of frequency ω incoming from the free lattice, the solution within the free lattice is xn
(t) =  eiqn−iωt +  Ae−iqn−iωt, where A is the reflection amplitude. The solution in the lattice with friction 
is xn(t) =  Beiq′n−iωt, where q′  has a non-zero imaginary component due to the finite phonon lifetime. 
Imposing the boundary conditions, the reflection amplitude is

( ) = −
−

−
,

( )

− ( ′− )

− ( ′+ )
A q e

e
1
1 8

i q q

i q q

where cosq′ =  cosq −  iγω/2K and ω =  ω(q) is the phonon dispersion relation for a free lattice. The two 
limiting cases are A =  0 at γ →  0 and |A| =  1 at γ →  ∞ with 0 <  |A| <  1 at any finite γ. This justifies the 
heuristic argument above that phonons with and without friction are indeed different resulting in a finite 
reflection amplitude at the friction/frictionless interface. At finite γ, the reflection is most significant near 
the band edges (i.e., within δω ≈  γ of ωmin or ωmax).

In equilibrium at temperature T, the momentum-resolved current from the free lattice to the extended 
reservoir is J(q) =  kBTvq[1 −  R(q)] for q >  0, where R(q) =  |A(q)|2 is the reflection coefficient. It is difficult 
to directly evaluate the current from the extended reservoir to the free lattice, but in equilibrium this cur-
rent has to fully compensate the one entering the reservoir from the free lattice. Using this correspond-
ence, we can now write down the current from a reservoir to the free lattice even at non-equilibrium 
conditions. This results in the following set of balance equations for the heat current through a free lattice 
between two extended reservoirs,

Figure 4.  Comparison of the exact numerical results (thick black line) for the conductance with the 
semi-analytical result, Eq. (10), shown by red circles. The model parameters are D/K =  1 and Nr =  100. 
Thin dashed line shows σ2. The inset shows that the semi-analytic result also works in the large γ regime. 
For weak friction, Eq. (10) reduces to Eq. (11), shown by blue crosses.
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where J(q) is the current within the free lattice and JL(R) is the current from the left (right) reservoirs. For 
example, the first equation states that the current from left to right within the free lattice equals the 
current from the left reservoir plus the portion of “left” current, J(− q), reflected by the interface with the 
right reservoir. Solving these equations and integrating over all phonon modes, ∫ ( ) + (− )
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which is similar to Eq. (2), except for the quotient within the integrand. This quotient is strictly posi-
tive and always less than 1 – it represents the non-vanishing thermal resistance of the interfaces due to 
phonon scattering and is known as the Kapitza resistance22. The small-γ expansion of Eq. (10) produces 
a very simple result

σ γ σ
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shown in Fig.  4 by blue crosses. As is seen, the universal tilt of − πkB/48m is independent of lattice 
parameters (except for mass) and in excellent agreement with numerical results in the plateau region. 
Furthermore, it turns out that Eq. (10) evaluated at arbitrary γ (red circles) does not only exactly repro-
duce the tilted plateau but also the high-γ regime (3). In particular, the large-γ expansion of Eq. (10) 
results in Eq.  (7). Therefore, Eq. (10)  is exact in the limit of Nr →  ∞ and is valid for the “moderate to 
strong friction” regime. The only regime it cannot reproduce is regime (1) since the limit Nr →  ∞ has 
been taken in the scattering calculation, which stretches the plateau all the way to γ =  0.

Kramers’ theory.  The crossover behavior discussed above is the thermal transport analog of the 
Kramers’ theory for the classical transition rate of a particle out of a metastable well in the presence of 
friction and noise23,24, as depicted in Fig. 1(b) for a double-well potential. The rate constant for the tran-
sition is γ γ( , ) = ( ) − /k E k eb

E k T
0

b B , where Eb is the height of the energy barrier and the prefactor k0(γ) 
depends on γ. Kramers demonstrated that k0(γ) ~ γ when γ is small. In general, the energy supplied by 
the noise to a particle in a certain well is lost either to friction or to the particle leaving this well by 
overcoming the barrier. The latter energy loss channel dominates when γ is very small so the friction can 
be essentially neglected. At these conditions, the transition rate is limited by the low rate at which noise 
can supply energy needed for a particle to overcome the barrier. This rate is linear with respect to γ, 
resulting in k0(γ) ~ γ. This behavior is indeed analogous to regime (1) in the thermal transport problem, 
where the free lattice is very efficient in carrying heat, so the heat current is limited by the rate at which 
the Langevin reservoir can input energy into the system, Eq. (6).

On the other extreme, as γ becomes very large, Kramers showed that k0(γ) ~ 1/γ. In this regime, the 
dynamics of the particle in the Kramers’ problem becomes increasingly non-ballistic due to the strong 
friction and noise. This results in the high probability of re-crossings, i.e., even if the particle overcomes 
the barrier and crosses the surface separating the wells, the very strong noise can still push it back thus 
preventing its thermalization in the new potential well24. The probability of re-crossings grows with γ 
resulting in k0(γ) ~ 1/γ.

In order to illustrate the re-crossing phenomenon in the Kramers’ problem and emphasize its simi-
larity to the large-γ regime (3) of the thermal transport problem, we deform the barrier in the Kramers’ 
problem as shown in Fig.  1(c). Specifically, we “stretch” the very top of the barrier into a horizontal 
ballistic region (i.e., no friction/noise) of a finite length (this is in contrast with the example of Section 
VII.E of ref. 23, where dissipation is present everywhere). This modification does not affect the transition 
rate since if a particle enters this region with a certain velocity, it will leave this region with the same 
velocity (remember that, within our model, there is no friction in the horizontal region). The only thing 
that changes by adding this “stretching” is the time required for a particle to cross the barrier – irrelevant 
in the steady state.

Once a particle reaches the top of the barrier going from the left, it propagates freely along the 
ballistic region until it reaches the onset of the right well. Upon hitting this onset, the particle imme-
diately becomes subject to noise which, if strong enough, can kick it back to the ballistic region, so the 
particle might end up in the the well it originally came from. Thus, the particle can be thought of as 
being reflected off the boundary between ballistic and non-ballistic regions. This is the phenomenon of 
re-crossing – the top of the barrier can be crossed multiple times without thermalization in either of the 
potential wells.

This perspective demonstrates the analogy to thermal transport at “moderate to strong” γ. Indeed, 
we were able to describe the thermal transport in regime (2) and regime (3), see inset in Fig.  4, by 
considering reflections of phonons off the boundary between the free lattice (no friction) and one of 
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the reservoirs (friction is present). The ballistic region and the two potential wells in the deformed 
double-well potential are then respective analogs of the free lattice and the extended reservoirs in the 
thermal transport problem.

This deep physical similarity between the two problems, when looked upon from the perspective of 
particle (or phonon) reflection, calls for qualitatively similar behavior as the magnitude of friction varies. 
Indeed, Eq. (10) gives σ ~ 1/γ at large γ, which matches k0(γ) ~ 1/γ in Kramers’ problem. Furthermore, at 
intermediate values of γ, the general Kramers’ solution reduces to the transition state theory (TST) rate 
kTST which does not depend on γ23,24. More accurately, the Kramers’ rate equals to kTST with negative cor-
rections linear with respect to γ, so that kTST is always an exact upper limit of the Kramers’ rate. This hap-
pens as well in the thermal transport problem where the conductance in regime (2) is given by Eq. (11).  
In this equation, σ2 – an exact upper limit – is an intrinsic conductance of the free lattice, which does 
not depend on friction.

We note that similar arguments can be applied to a version of the Kramers’ problem where a classical 
particle escapes a single metastable potential well23. In this formulation, Kramers’ problem becomes anal-
ogous to a problem of thermal transport through the interface between a free lattice and a lattice with 
uniform friction studied by us when discussing the tilt of the plateau. In particular, the low probability 
of phonon transmission through the interface between these two lattices at large γ is analogous to the 
particle escape rate scaling as 1/γ in the Kramers’ problem of a metastable potential well.

The appealing picture developed above is based on very general and intuitive physical arguments and 
is, therefore, expected to be valid beyond the specific case of a uniform harmonic lattice. Indeed, below 
we discuss the two important cases of (i) a harmonic lattice with disorder and (ii) an anharmonic lattice. 
We demonstrate the existence of three distinct regimes of thermal transport and, therefore, the similarity 
to Kramers’ problem.

Disordered Harmonic Lattice.  The Hamiltonian for a harmonic lattice with mass disorder reads as
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The mass disorder is realized by sampling mass uniformly and independently for each lattice site within 
the interval mn =  m ±  δm =  m(1.0 ±  0.3), so that the mean mass, m, is the same as in the non-disordered 
case, Eq (1). The central “free” part of the lattice is kept to be N −  2Nr =  60 sites long. The sizes of the 
extended reservoirs are Nr =  1, 10 and 100 (the same on the left and on the right in each calculation).

Figure  5(a) shows the heat conductance versus γ for a harmonic lattice with mass disorder. The 
presented numerical results are statistically averaged over the disorder. The crossover behavior is indeed 
present. Furthermore, when Nr increases the plateau starts to form as it was the case for the homogene-
ous lattice. However, the magnitude of the conductance at the plateau, σ2(dis), is approximately an order 
of magnitude lower than σ2(hom) (dashed black line), the latter being the intrinsic conductance of the 
homogeneous lattice. This is due to disorder-induced finite phonon mean free path being shorter than 
N −  2Nr =  60, which lowers the conductance.

Anharmonic Lattice.  To investigate the crossover behavior in an anharmonic lattice we examine the 
thermal conductance in a paradigmatic nonlinear lattice – the Peyrard-Bishop-Dauxois (PBD) model25–27.  
The PBD model is a one dimensional lattice that represents nonlinear fluctuations of DNA as it denatures. 
Here, we are primarily interested in the crossover behavior for a highly nonlinear lattice, rather than the 
physics of the denaturation transition where the double helix separates into two single strands (the 
transport physics described by this model has been discussed elsewhere, see refs 19,20). The Hamiltonian 
takes on the form

∑ ∑ ∑= + ( ) + ( , ),
( )= = =

+H mx V x W x x1
2 13n

N

n
n

N

n
n

N

n n
1

2

1 0
1

where xn represents the base-to-base distance within the nth base pair. The on-site Morse potential 
( ) = ( − )−∼

V x D e 1n
ax 2n  represents the hydrogen bonding between the bases and the coupling term 

ρ( , ) = ( + )( − )+
− ( + )

+

∼
+W x x e x x1n n

K b x x
n n1 2 1

2n n 1  gives the stacking interaction. We note that with 
small amplitude fluctuations (at low temperature) this model is harmonic with parameters = /

∼D D a2 2 
and ρ= ( + )

∼K K 1 . Similarly, at high temperature, the model is harmonic with parameters D =  0 and 
=

∼K K . In between, the model displays highly nonlinear behavior.
The results of simulations, shown in Fig. 5(b), clearly demonstrate three regimes of thermal transport. 

Specifically, σ(γ) ~ γ and σ(γ) ~ 1/γ at small and large γ, respectively. Regime (2), where σ(γ) ≈  constant, 
is most pronounced at lower temperatures because the extended reservoir size is kept fixed and the 
conductance is lowest at this point, see the discussion below. We have shown elsewhere that this regime 
has a well-defined conductivity20.

Unlike the harmonic model, the intrinsic conductance of nonlinear lattices does in general depend on 
temperature. In case of the PBD model, the intrinsic conductance of the lattice increases as the average 
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temperature increases across the denaturation transition, which is apparent in the increase of the con-
ductance plateau. This increase is due to the decrease in nonlinearity of the model as the transition is 
crossed from below. Moreover, the length of the plateau region shortens due to the increasing conduct-
ance. At higher temperatures, the crossover from Regime (1) to Regime (2) happens at a larger γ, as the 
rate of heat input from the reservoir (~γ) has to compete with the intrinsic conductance of the complete 
reservoir/lattice system. A similar shift in the crossover happens for Regime (2) to Regime (3). In addi-
tion to this model, the crossover behavior has been observed in other anharmonic lattices, such as the 
FPU lattice5. We note that for anharmonic lattices the heat conductance can scale nontrivially with the 
length and temperature, which will result in an intricate interplay between these variables, the extended 
reservoir size, and the width of the plateau region, as seen in Fig. 5(b).

Discussion
We elucidated the mechanisms behind the crossover behavior of thermal transport as the strength of 
coupling to the reservoirs is varied. The evidence suggests that this behavior is universal, applying to 
harmonic, anharmonic, and disordered systems. It is also guaranteed to exist in higher dimensional har-
monic systems as well, due to the closed form expression of transport in arbitrary lattices. This phenom-
enon parallels the physical behavior observed in Kramers’ transition state problem. Our results illuminate 
the regime where the intrinsic conductance is manifest. It is in this regime where nonlinear fluctuations, 
disorder, etc., dominate the conductance and where thermal transport can be used to probe physical 
processes, such as DNA denaturation19,20. We also note that in many physical systems, the friction coef-
ficient γ depends on frequency, giving rise to memory in the equations of motion13,18,28. We expect a 
crossover to still occur when the overall coupling to the external reservoirs is tuned. The intermediate 

Figure 5.  Crossover behavior in disordered and anharmonic lattices. (a) The thermal conductance 
of a disordered harmonic lattice with Nr =  1, 10 and 100 (black circles, red squares and blue diamonds) 
and N −  2Nr =  60. The system is the same as that in Fig. 2, i.e., D/K =  1, except for the mass which is 
now sampled uniformly and independently for each site within the interval mn =  m(1 ±  0.3). The dashed 
line gives the intrinsic conductance for a homogeneous lattice, σ2(hom), demonstrating that the disorder 
significantly decreases the heat conductance of the lattice, σ2(dis) at the plateau. The curve is averaged over 
100 to 1000 realizations of the disorder so that magnitude of the error due to the incomplete averaging over 
disorder is comparable to the thickness of the lines. (b) The thermal conductance of anharmonic PBD lattice 
with Nr =  20 and N =  100 for various average temperatures T. The error bars are computed using the range 
of fluctuations of the cumulative current for the final 10% of the simulation time.
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regime, however, may display more complex behavior due to how the reservoirs affect modes at different 
frequency scales. We leave this study for a future investigation.

Moreover, non-equilibrium molecular dynamic simulations is the standard tool in the study of ther-
mal transport in nanoscale systems (see, e.g., refs 3,29–36). In these simulations the strength of coupling 
to the environment (in the form of, e.g., Langevin or Nose-Hoover thermostats) is a free parameter. It is 
relatively innocuous when a well-defined conductivity exists. However, when both ballistic and diffusive 
effects are present – as is the case at the nanoscale – the choice of this coupling affects the calculation 
of the thermal conductance. It thus must be chosen to appropriately simulate the property of interest, 
whether it is the thermal conductance of the device or the intrinsic conductance of the functional system. 
This is especially important when extracting scaling exponents of the conductance versus temperature or 
lattice length in nonlinear and disordered systems, as both quantities nontrivially affect the conductance 
and the crossover behavior can spuriously influence the predicted scaling.

Methods
Harmonic Lattices.  The harmonic lattices we consider are described by Eq. (1). We also connect two 
additional sites x0 and xN+1 to the ends of the lattice, which are fixed at zero. The Langevin equations of 
motion are

+ + − − = ( ), ( )− +̈mx Dx K x x x f t[2 ] 14n n n n n n1 1

where the l.h.s. describes the Hamiltonian dynamics and the r.h.s. is the reservoir-induced noise and 
friction forces, η γ( ) = ( ) − ( )f t t x tn n n n . The noise ηn(t) and friction coefficient γn are related by the 
fluctuation-dissipation relation

η η γ δ δ( ) ( ′) = ( − ′). ( )t t k T t t2 15n m n B n nm

The three regions of the lattice (L, F and R) are encoded in equations of motion by setting

γ
γ

=





, ∈
, ∈ ( )

n L R
n F

or
0 16n

and Tn =  TL or TR for n ∈  L or R, respectively. Here, a collection of independent (uncorrelated) single site 
Langevin reservoirs approximates the contact to the thermal reservoir37. When TL =  TR =  T, the lattice 
will relax into an equilibrium state at temperature T, as guaranteed by the fluctuation-dissipation theo-
rem. When TL ≠ TR, a heat current will flow (we assume TL >  TR without loss of generality).

The current flowing from site n to n +  1 is given by15,37

= , ( )+J K x x 17n n n1

where the average is over the statistical ensemble. For n ∈  F, Jn will be independent of n, i.e., Jn ≡  J, in 
the steady state.

We note that thermal transport occurs ballistically in a frictionless harmonic lattice. This results in a 
diverging conductivity, which can be defined as σ( − )→∞ N Nlim 2N r  at fixed Nr. However, the conduct-
ance, σ, is well defined and is rapidly converging to its value corresponding to an infinite lattice, as shown 
in the inset of Fig. 2. Henceforth, we always assume N →  ∞ at fixed Nr for homogeneous harmonic lat-
tices. Dimensional analysis shows that the conductance of a uniform harmonic lattice in the limit N →  ∞ 
takes the form (see the supplementary information for the derivation)

σ
γ

=
∆

=




, ,





,

( )
J
T

k K
m

C D
K mK

N
18B r

where Δ T =  TL −  TR and C is a as of yet unknown dimensionless function of three dimensionless argu-
ments. This expression implies that harmonic lattices with distinct values of parameters are nevertheless 
physically similar if /K m , D/K, γ/ mK , and Nr are identical. Such models can be said to form a 
“similarity class”. In what follows, all the figures pertaining to the harmonic case are plotted in natural 
units, i.e., γ is plotted in units of mK , σ is plotted in units of /k K mB , etc. Note that we use Δ T 
defined with the external reservoir temperatures TL and TR, as these are the ones typically set/measured 
experimentally.

For the anharmonic lattice, the setup is the same as for harmonic lattices, but with the equation of 
motion given by its respective Hamiltonian.

Numerical Methods.  For anharmonic lattice the evolution of the coordinates is computed using the 
Brünger-Brooks-Karplus integrator with a time step of 10 fs. The total length of the simulation varies 
from 0.1 ms to 2 ms depending on the convergence of current. The temperature difference between the 
hot and cold reservoirs was maintained at 9.3 K for all calculations. The parameters used are same as in 
ref. 26, i.e., = .

∼D 0 04 eV, a =  44.5 nm−1, =
∼K 4 eV/nm2, ρ =  0.5, b =  3.5 nm−1, and m =  300 u.



www.nature.com/scientificreports/

1 0Scientific Reports | 5:17506 | DOI: 10.1038/srep17506

References
1.	 Li, N. et al. Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 

(2012).
2.	 Dubi, Y. & Di Ventra, M. Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 

131 (2011).
3.	 Yang, N., Xu, X., Zhang, G. & Li, B. Thermal transport in nanostructures. AIP Advances 2, 041410 (2012).
4.	 Bonetto, F., Lebowitz, J. & Rey-Bellet, L. Fourier’s law: A challenge for theorists. In Fokas, A., Grigoryan, A., Kibble, T. & 

Zegarlinski, B. (eds) Mathematical Physics 2000, 128 (Imperial College Press, London, UK, Chicago, 2000).
5.	 Lepri, S., Livi, R. & Politi, A. Thermal conduction in classical low-dimensional lattices. Phys. Reports 377, 1–80 (2003).
6.	 Dubi, Y. & Di Ventra, M. Fourier’s law: Insight from a simple derivation. Phys. Rev. E 79, 042101 (2009).
7.	 Michel, M., Gemmer, J. & Mahler, G. Microscopic quantum mechanical foundation of Fourier’s law. Int. J. Mod. Phys. B 20, 

4855–4883 (2006).
8.	 Buchanan, M. Heated debate in different dimensions. Nature Phys. 1, 71–71 (2005).
9.	 Li, Y., Liu, S., Li, N., Hanggi, P. & Li, B. 1D momentum-conserving systems: The conundrum of anomalous versus normal heat 

transport. New J. Phys. 17, 043064 (2015).
10.	 Fermi, E., Pasta, J. & Ulam, S. Studies of the nonlinear problems. I. Los Alamos Sci. Lab. Rep. No. LA-1940 (1955).
11.	 Berman, G. P. & Izrailev, F. M. The Fermi-Pasta-Ulam problem: 50 years of progress. Chaos 15, 015104 (2005).
12.	 Gallavotti, G. The Fermi-Pasta-Ulam problem: a status report, vol. 728 (Springer Verlag, 2008).
13.	 Dhar, A. Heat transport in low-dimensional systems. Adv. Phys. 57, 457–537 (2008).
14.	 Liu, S., Xu, X., Xie, R., Zhang, G. & Li, B. Anomalous heat conduction and anomalous diffusion in low dimensional nanoscale 

systems. Eur. Phys. J. B 85, 1–20 (2012).
15.	 Casher, A. & Lebowitz, J. L. Heat flow in regular and disordered harmonic chains. J. Math. Phys. 12, 1701–1711 (1971).
16.	 Bernardin, C. & Olla, S. Fourier’s law for a microscopic model of heat conduction. J. Stat. Phys. 121, 271–289 (2005).
17.	 Nakazawa, H. On the lattice thermal conduction. Prog. Theor. Phys. Supplement 45, 231–262 (1970).
18.	 Dhar, A. Heat conduction in the disordered harmonic chain revisited. Phys. Rev. Lett. 86, 5882 (2001).
19.	 Velizhanin, K. A., Chien, C.-C., Dubi, Y. & Zwolak, M. Driving denaturation: Nanoscale thermal transport as a probe of DNA 

melting. Phys. Rev. E 83, 050906 (2011).
20.	 Chien, C.-C., Velizhanin, K. A., Dubi, Y. & Zwolak, M. Tunable thermal switching via DNA-based nano devices. Nanotechnology 

24, 095704 (2013).
21.	 Terraneo, M., Peyrard, M. & Casati, G. Controlling the Energy Flow in Nonlinear Lattice: A model for a Thermal Rectifier. Phys. 

Rev. Lett. 88, 094302 (2002).
22.	 Kapitza, P. L. The study of heat transfer in helium II. J. Phys.(USSR) 4, 181–201 (1941).
23.	 Hänggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory: Fifty years after Kramers. Rev. Mod. Phys. 62, 251 (1990).
24.	 Melnikov, V. I. The Kramers problem: Fifty years of development. Phys. Rep. 209, 1–71 (1991).
25.	 Peyrard, M. & Bishop, A. R. Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 62, 2755–2758 

(1989).
26.	 Dauxois, T., Peyrard, M. & Bishop, A. R. Entropy-driven DNA denaturation. Phys. Rev. E 47, R44–R47 (1993).
27.	 Dauxois, T., Peyrard, M. & Bishop, A. R. Dynamics and thermodynamics of a nonlinear model for DNA denaturation. Phys. Rev. 

E 47, 684–695 (1993).
28.	 Banerjee, S. & Dhar, A. Classical limit of master equation for a harmonic oscillator coupled to an oscillator bath with separable 

initial conditions. Phys. Rev. E 73, 067104 (2006).
29.	 Luo, T. & Lloyd, J. R. Non-equilibrium molecular dynamics study of thermal energy transport in Au-SAM-Au junctions. Int. J. 

Heat Mass Transfer 53, 1–11 (2010).
30.	 Wang, Y., Ruan, X. & Roy, A. K. Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across 

metal-nonmetal interfaces. Phys. Rev. B 85, 205311 (2012).
31.	 Zhang, Y., Barnes, G. L., Yan, T. & Hase, W. L. Model non-equilibrium molecular dynamics simulations of heat transfer from a 

hot gold surface to an alkylthiolate self-assembled monolayer. Phys. Chem. Chem. Phys. 12, 4435–4445 (2010).
32.	 Falat, T., Platek, B. & Felba, J. Non-equilibrium molecular dynamics simulation of heat transfer in carbon nanotubes - verification 

and model validation. Paper presented at Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics 
and Microsystems (EuroSimE), 2011 12th International Conference on, 1–5, Linz. http://dx.doi.org/10.1109/ESIME.2011.5765853 
(2011, April 18–20).

33.	 Wang, S. C., Liang, X. G., Xu, X. H. & Ohara, T. Thermal conductivity of silicon nanowire by nonequilibrium molecular dynamics 
simulations. J. Appl. Phys. 105, 014316 (2009).

34.	 Saha, S. K. & Shi, L. Molecular dynamics simulation of thermal transport at a nanometer scale constriction in silicon. J. Appl. 
Phys. 101, 074304 (2007).

35.	 Xu, X. et al. Length-dependent thermal conductivity in suspended single-layer graphene. Nature Comm. 5 (2014).
36.	 Mortazavi, B., Rajabpour, A., Ahzi, S., Rémond, Y. & Mehdi Vaez Allaei, S. Nitrogen doping and curvature effects on thermal 

conductivity of graphene: A non-equilibrium molecular dynamics study. Solid State Commun. 152, 261–264 (2012).
37.	 Segal, D., Nitzan, A. & Hanggi, P. Thermal conductance through molecular wires. J. Chem. Phys. 119, 6840–6855 (2003).

Acknowledgements
K.A.V. was supported by the U.S. Department of Energy through the LANL/LDRD Program. Y.D. 
acknowledges support from the Israel Science Fund (grant No. 1256/14). S. Sahu acknowledges support 
under the Cooperative Research Agreement between the University of Maryland and the National Institute 
of Standards and Technology Center for Nanoscale Science and Technology, Award 70NANB10H193, 
through the University of Maryland.

Author Contributions
M.Z. proposed the project and C.C.C. and M.Z. obtained an initial description of the crossover behavior. 
K.A.V. suggested the connection to Kramers’ problem and developed an eloquent theory of the crossover. 
K.A.V., C.C.C. and M.Z. performed analytical calculations and S.S. and K.A.V. performed numerical 
calculations. All authors wrote the manuscript and clarified the ideas.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

http://dx.doi.org/10.1109/ESIME.2011.5765853
http://www.nature.com/srep


www.nature.com/scientificreports/

1 1Scientific Reports | 5:17506 | DOI: 10.1038/srep17506

Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Velizhanin, K. A. et al. Crossover behavior of the thermal conductance and 
Kramers' transition rate theory. Sci. Rep. 5, 17506; doi: 10.1038/srep17506 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/


Crossover behavior of the thermal conductance and Kramers’ transition rate theory –
Supplemental Information

Kirill A. Velizhanin,1, ∗ Subin Sahu,2 Chih-Chun Chien,3 Yonatan Dubi,4 and Michael Zwolak2, 5, †

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2Department of Physics, Oregon State University, Corvallis, OR 97331, USA

3School of Natural Sciences, University of California, Merced, CA 95343, USA
4Department of Chemistry and the Ilse Katz Institute for Nanoscale Science and Technology,

Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
5Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

I. DIMENSIONAL ANALYSIS OF THE
UNIFORM HARMONIC MODEL

The complete list of parameters of the uniform har-
monic model introduced in main article is: m, D, K,
γ, kBTL, kBTR, N , Nr. We take m, K and kB∆T =
kB(TL − TR) as fundamental units to make all the other
parameters dimensionless. Then, the independent di-
mensionless parameters of the model are

D

K
,

γ√
mK

,
TL + TR

∆T
, N and Nr. (1)

Using these dimensionless parameters, the exact expres-
sion for the heat current through the lattice can be writ-
ten as

J

kB∆T

√
m

K
= C

(
D

K
,

γ√
mK

,
TL + TR

∆T
,N,Nr

)
, (2)

where C is a dimensionless function of five dimensionless
arguments. This very general expression can be simpli-
fied by (i) taking N → ∞ (see inset in Fig. 2 of main
article) and by (ii) exploiting the fact that the heat cur-
rent in such a model is proportional to ∆T [see Eq. (17)
and the related discussion], then the function C cannot
depend on TL and TR. These considerations result in

J

kB∆T

√
m

K
= C

(
D

K
,

γ√
mK

,Nr

)
, (3)

where C is now a dimensionless function of just three
dimensionless arguments. The expression for heat con-
ductance of the 1D uniform harmonic model considered
in this work can then be written in the limit of N →∞
as

σ = kB

√
K

m
C

(
D

K
,

γ√
mK

,Nr

)
. (4)
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II. NUMERICAL SOLUTION OF LANGEVIN
EQUATIONS OF MOTION

The Langevin equations of motion for a lattice of har-
monic oscillators, given by the Hamiltonian

H =
1

2
pᵀM−1p +

1

2
xᵀKx, (5)

are a system of first-order linear differential equations

ẋn = pn/mn,

ṗn +

N∑
m=1

Knmxm + γnpn/mn = ηn(t), (6)

where the mass can potentially be site-dependent in or-
der to, e.g., examine mass disorder, as discussed in main
article. The matrix K contains the interaction potentials
and [M]nm = δnmmn is a diagonal matrix of the masses.
These equations of motion can be expressed as

d

dt
|q(t)〉+ G|q(t)〉 = |η(t)〉, (7)

where

|q〉 ⇒
(
~x
~p

)
. (8)

The non-symmetric matrix G is given by

G =

(
0 −M−1

K ΓM−1

)
, (9)

where Γ is a diagonal matrix of the couplings to the
Langevin reservoirs (and tr|Γ| = 2Γ, where Γ is the cu-
mulative friction coefficient).

The formal solution of Eq. (7) is

|q(t)〉 =

∫ t

t0

dt′ e−G(t−t′)|η(t′)〉. (10)

An important class of observables can be expressed as an
average of a quadratic form of |q(t)〉 over the statistical
ensemble. For example, the heat current flowing from
site n to site n+ 1 can be written as a statistical average



2

of

Jn = −Kn+1,n

mn+1
pn+1xn. (11)

An observable of this class can be represented by an op-
erator O so that

O(t) = 〈q(t)|O|q(t)〉

=

∫ t

t0

dt′
∫ t

t0

dt′′ 〈η(t′)|e−G
†(t−t′)Oe−G(t−t′′)|η(t′′)〉.

(12)

Averaging over the statistical ensemble and using Eq. 15
from the methods section of main article for the auto-
correlation function of the random forces, one obtains

O(t) =

∫ t

t0

dt′ Tr
[
e−G

†(t−t′)Oe−G(t−t′)F
]
, (13)

where F is a diagonal matrix with its only non-zero ele-
ments given by

FN+n,N+n = 2γnkBTn, n = 1, 2, ..., N. (14)

The spectral decomposition of the particular class of non-
symmetric operators G above necessarily includes left
and right eigenvectors, i.e., G =

∑
k λk|kR〉〈kL|, where

the components of right (column) and left (row) eigenvec-

tors are denoted by [|kR〉]n = vRn,k and [〈kL|]n =
(
vLn,k

)∗
,

respectively. The orthonormality condition is 〈kL|lR〉 =∑2N
n=1

(
vLn,k

)∗
vRn,l = δkl. The spectral decomposition of

G† is given by G† =
∑
k λ
∗
k|kL〉〈kR|, where |kL〉 = 〈kL|†

and 〈kR| = |kR〉†.
Substituting these spectral decompositions into

Eq. (13), setting t0 → −∞ to find the steady-state value
of the observable, and integrating, we obtain

O =

2N∑
k,l=1

〈lR|O|kR〉〈kL|F|lL〉
λk + λ∗l

. (15)

This equation allows one to draw very general conclu-
sions regarding the dependence of the observable O on
temperature without the need to explicitly specify G and
O. Since operators O (e.g., heat current) and G do not
typically depend on temperature, and the operator F in
Eq. (14) is strictly linear with respect to temperature, O
is then a linear form of T1, T2, ..., TN . Specifically, since
in the harmonic lattice case we examine there is only two
independent temperatures, TL and TR, O is necessary a
linear form of TL and TR, i.e.,

O(TL, TR) = αLTL + αRTR, (16)

where αL and αR are coefficients that depend only on
specific parameters of the system and the nature of oper-
ator O, but not temperature. For example, since the heat

current has to vanish at thermodynamic equilibrium, we
must have αL = −αR and, therefore,

J ∝ TL − TR. (17)

That is, the heat conductance depends only on the tem-
peratures TL and TR through their difference. These con-
siderations do not lead to the same conclusion in the case
of anharmonic lattices, as illustrated in Fig. 5(b).

III. HEAT CURRENT IN 1D HARMONIC
LATTICES

To use Eq. (15) to evaluate the heat current in the
lattice of harmonic oscillators, one needs to construct
operators G and O. Below we explicitly construct these
matrices and derive an expression for the heat current.

The system under consideration is a lattice of harmonic
oscillators with only nearest neighbor coupling, which
yields a matrix K in Eq. (5) that is sparse. For an oscil-
lator with index n somewhere inside the lattice (i.e., 1 <
n < N), the corresponding nth row of the matrix has only
three non-zero components (Kn,n−1,Kn,n,Kn,n+1) =
(−K,D + 2K,−K), where K and D are parameters in
the Hamiltonian. The end sites, n = 1 and n = N , are
assumed to be coupled to “hard walls”, i.e., to implicit
oscillators with indices n = 0 and n = N+1, respectively,
whose coordinates are kept zero. This results in only two
non-zero matrix elements in the very first and the very
last rows of matrix K: (K1,1K1,2) = (D + 2K,−K) and
(KN,N−1KN,N ) = (−K,D + 2K).

According to Eq. (11), the operator Jn corresponding
to the heat current from site n to site n + 1 has only a
single non-zero element

[Jn]N+n+1,n =
K

mn+1
. (18)

Substituting this expression, together with Eq. (14) and
the eigenvectors of G and G†, into Eq. (15) gives

Jn =
2kBK

mn+1

2N∑
k,l=1


(
vRN+n+1,l

)∗
vRn,k

λk + λ∗l

×
N∑
m=1

γmTm
(
vLN+m,k

)∗
vLN+m,l

]
. (19)

IV. HEAT CURRENT IN THE SMALL γ
REGIME

The most convenient way to analyze the small γ dy-
namics of the 1D lattice is to perform a perturbation
expansion of eigenvalues and eigenvectors of operator G
with respect to γ. G is at most linear with respect to γ
and can be represented as G = G0 + γG1, where G0,1



3

are independent of γ. The zeroth-order eigenvalues and
eigenvectors of G are then the eigenvalues and eigenvec-
tors of G0,

G0 =

(
0 −M−1

K 0

)
. (20)

The solutions – normal modes of lattice vibrations with
no friction – can be found in the standard way, first by
scaling (“mass-weighting”) by S = diag(M1/2,M−1/2),

SG0S
−1 =

(
0 −I

M− 1
2 KM−1/2 0

)
(21)

and then diagonalizing the mass-weighted coupling
M−1/2KM−1/2 via an orthogonal transformation T.
The normal modes of the lattice are

xkn(t) = ukne
±iωkt, (22)

where ukn =
[
M−1/2T

]
nk

are the real-valued polariza-
tion vectors of the normal modes and n, k = 1, . . . , N
enumerate the lattice sites and modes, respectively.

The eigenvalues and right eigenvectors (hence denoted
with R below) of G0 can be readily constructed from
these and they come in pairs. The unnormalized “posi-
tive frequency” solutions are

λ0k = iωk,

v0,Rn,k ∝ u
k
n, (23)

v0,RN+n,k ∝ −iωkmnu
k
n,

for k = 1, . . . , N and n = 1, . . . , N . The unnormalized
“negative frequency” solutions are

λ0k = −iωk,
v0,Rn,k ∝ u

k
n, (24)

v0,RN+n,k ∝ iωkmnu
k
n,

for k = N + 1, . . . , 2N , n = 1, . . . , N , and “extending”
ωk = ωk−N and ukn = uk−Nn for k > N . We have or-
dered the solution so that when the positive frequency
solution takes on the label k, the negative frequency so-
lution takes on the label k+N . The last two lines of each
of these solutions reflect the simple relationship between
momenta and the time derivative of coordinates, the first
line in Eq. (6).

The left eigenvectors can be found in a similar way, es-
sentially the position and momenta change roles includ-
ing how they are scaled by mass. With the convention

that [〈kL|]n =
(
vLn,k

)∗
, the unnormalized “positive fre-

quency” solutions are

λ0k = iωk,

v0,Ln,k ∝ iωkmnu
k
n, (25)

v0,LN+n,k ∝ u
k
n,

for k = 1, . . . , N and n = 1, . . . , N . The unnormalized
“negative frequency” solutions are

λ0k = −iωk,
v0,Ln,k ∝ −iωkmnu

k
n, (26)

v0,LN+n,k ∝ u
k
n,

for k = N + 1, . . . , 2N , n = 1, . . . , N , and the same
“extension” for k > N . The left and right eigenvectors
clearly obey the right orthogonality relationship, but for
each k have norm ∓2iωk for “positive” and “negative”
frequencies, respectively.

The first-order perturbative correction to the eigenval-
ues of G0 can be found in the usual manner, i.e.,

λ1k = γ〈k0L|G1|k0R〉. (27)

Using this expression, we can now expand the current.
To do so, we will make use of Eq. (15). The matrix
element 〈kL|F|lL〉 is linear with respect to γ at small
γ, i.e., putting in the normalized zeroth order states
〈k0L|F|l0L〉 =

∑
n 2γnkBTnu

k
nu

l
n/
√

4ωkωl. Thus, we can
focus on the quantity

〈lR|Jn|kR〉
λk + λ∗l

(28)

and show that it is zeroth order with respect to γ. We
separate the summation in Eq. (15) into the off-diagonal
(k 6= l) and diagonal (k = l) contributions. Assuming no
degeneracy, the former is nonzero and well-behaved when
zeroth-order eigenvalues and eigenvectors are used since
the denominator in Eq. (15) does not vanish at k 6= l.
The off-diagonal contribution is thus proportional to γ
at small γ.

The diagonal contribution has a vanishing denomina-
tor as γ approaches zero, i.e., λ0k is pure imaginary which
gives λk + λ∗k = 0 +

∑
n γn(ukn)2 + O(γ2). Performing

the whole sum, however, we can pair the “positive” and
“negative” frequencies:

N∑
k=1

(〈kR|Jn|kR〉+ 〈(k +N)R|Jn|(k +N)R〉)
〈k0L|F|k0L〉
λk + λ∗k

(29)
where the last factor is the same for both “positive” and
“negative” frequencies. The term in parenthesis gives(
imn+1u

k
n+1u

k
n

2
+
−imn+1u

k
n+1u

k
n

2
+O(γ)

)
= 0 +O(γ)

(30)
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Thus, the sum over “positive” and “negative” frequencies
gives a contribution that is of order γ. Therefore, the
current for small γ is J ∝ γ.

V. HEAT CURRENT IN THE LARGE γ
REGIME

The current in the large γ regime can also be calculated
perturbatively in powers of 1/γ. We consider only single
sites at each end connected to Langevin reservoirs, as any
additional sites in the extended reservoir are decoupled
from the lattice by higher orders in 1/γ. Now consider
the matrix γG1 + G0, where G0 is the perturbation.
The expansion is complicated by the fact that the “bare”
matrix

γG1 =

(
0 0
0 ΓM−1

)
(31)

is highly degenerate, with 2N − 2 zero eigenvalues and
2 non-zero eigenvalues. The latter two are γ/m1 and
γ/mN , which may have an (unimportant) degeneracy,
and we can take two of the zeroth order right (left) eigen-
vectors to be |N + 1〉 and |2N〉 (〈N + 1| and 〈2N |).

The degenerate space is spanned by the states |n〉 with
n = 1, . . . , N and |N +m〉 with m = 2, . . . , (N − 1). The
degeneracy is lifted in the normal way: Let P0 project
onto this subspace and diagonalize P0G0P0. This ma-
trix has 2N − 4 eigenvectors with non-zero eigenvalues.
The right eigenvectors with non-zero eigenvalues have the
same form as Eqs. (23) and (24) except found from the
lattice sites 2, . . . , (N − 1) only. The other two eigen-
vectors have a zero eigenvalue. Their degeneracy is not
broken until the next order (1/γ), and requires diagonal-
izing

G = P0G0P0 −
1

γ
P0G0P̃0

1

G1
P̃0G0P0, (32)

with P̃0 = (I−P0). This matrix has a simple form

G = −
∑
n 6=1,N

1

mn
|n〉〈N + n|+

∑
n 6=1,N ;m

Knm|N + n〉〈m|

+
1

γ

∑
n=1,N ;m

Knm|n〉〈m|. (33)

Using this, we can search for the remaining two lin-
early independent and stable right eigenvectors with an
eigenvalue of order 1/γ. This results in a generalized
eigenvalue problem for the zeroth order right eigenvec-
tors, K|λ0〉 = λB|λ0〉 where [B]nm = δnm (δn1 + δnN ).
When this eigenvector is extended to the full degener-
ate space (padding it with zeros for all the momentum
components), one has G|λ0〉 ≈ λ/γ|λ0〉.

Starting with these zeroth order eigenvectors, then we
can apply perturbation theory as usual. This results
in three sets of eigenvectors, (B1) ones with eigenval-

↓ k 6= l→ l ∈ B−1 l ∈ B0 l ∈ B1

k ∈ B−1 1
γ ·

1
γ · γ 1 · 1γ · 1

1
γ · 1 ·

1
γ

k ∈ B0 1 · 1γ · 1 1 · 1γ · 1 1 · 1 · 1γ

k ∈ B1 1
γ · 1 ·

1
γ 1 · 1 · 1γ

1
γ · 0 ·

1
γ

TABLE I. Order of the different factors, 〈lR|J|kR〉 · 〈kL|F|lL〉 ·
(λk + λ∗l )−1, in the current contribution, Eq. 15, when k 6= l.
Note that cross terms between B1 and B1 are identically zero
given our choice of zeroth order eigenvectors.

ues that are O(γ) (|N + 1〉 and |2N〉), (B0) ones that
are O(1) (Eqs. (23) and (24) but in the internal lattice),
and (B−1) ones that are O(1/γ) (K|λ0〉 = λB|λ0〉). We
can also delineate these sets by the subspace on which
the zeroth order eigenvectors live (B1 on (|N + 1〉 and
|2N〉; B0 on |n〉 with n = 2, . . . , (N − 1) and |N + m〉
with m = 2, . . . , (N − 1); B−1 on |n〉 with n = 1, . . . , N).
Contributions to the eigenvectors outside this subspace
will be order 1/γ. As with the small γ regime, we need
to group the different contributions into diagonal and
off-diagonal (and then further distinguish between off-
diagonal contributions between these three groups). We
will break down the contributions to Eq. (15) in terms of
each of the factors 〈lR|J|kR〉, 〈kL|F|lL〉, and (λk+λ∗l )

−1.
We start with the diagonal contributions. For

eigenvectors in B1, we get contributions to 〈lR|J|kR〉;
〈kL|F|lL〉; (λk + λ∗l )

−1 of: at most O(1/γ) due to the
zeroth order states living on {|N + 1〉, |2N〉}; O(γ) as,
e.g., 〈N + 1|F|N + 1〉 = O(γ); O(1/γ) because λk ≈ γ.
This gives an overall contribution at most of order 1/γ.

For eigenvectors in B0, we get O(1) (this is the same
calculation as Eq. (30), as the states are eigenstates of
G0 on the internal lattice); O(1/γ) because although F
is order γ, the contribution of |N + 1〉 and |2N〉 to the
eigenvector are order 1/γ; O(γ) because the eigenvalue
has a real part that is order 1/γ (the imaginary part is
order 1 but this cancels in λk +λ∗l ). Thus, the total con-
tribution from a eigenvector in B0 is order 1. However,
just like in Eq. (30) for the small γ regime, this contribu-
tion always has a paired contribution from the negative
and positive frequency mode, which cancels this order 1
contribution. This gives an overall contribution at most
of order 1/γ.

For eigenvectors in B−1, we get O(1/γ) due to the ze-
roth order eigenvector living only on the position compo-
nent of the vector; O(1/γ) because although F is order
γ, the contribution of |N + 1〉 and |2N〉 to the eigenvec-
tor are order 1/γ; O(γ) because the eigenvalue has a real
part of order 1/γ. This gives an overall contribution at
most of order 1/γ.

For the off-diagonal terms, we give the contributions to
each of the three factors for all the different possibilities
in Table I. The highest order contributions from the off
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diagonal are order 1/γ. Thus, the sum over all contribu-
tions gives zero for the zeroth order term and the leading
term is order 1/γ.

We note that for both the small γ and large γ regimes,
these well-defined perturbation expansions demonstrate
that the the zeroth order terms are zero, a fact which is
obvious for the small γ regime (i.e., there would be no

driving force for the thermal current) but not the large
γ regime. Moreover, due to the presence of the different
temperature reservoirs at each end, the first order expres-
sions are non-zero always unless the lattice has a broken
link. Coupled with the results of the anharmonic lattice,
the perturbative expressions give evidence that the pres-
ence of these regimes are universal except in pathological
cases.


	Crossover behavior of the thermal conductance and Kramers’ transition rate theory

	Results

	Intrinsic conductance. 
	Casher-Lebowitz formula. 
	Small γ regime. 
	Large γ regime. 
	The plateau and tilt. 
	Kramers’ theory. 
	Disordered Harmonic Lattice. 
	Anharmonic Lattice. 

	Discussion

	Methods

	Harmonic Lattices. 
	Numerical Methods. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Thermal conductance and Kramers’ transition rate problem.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ The thermal conductance of a harmonic lattice with D/K = 1, Nr = 100, and N → ∞.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Comparison of numerical (circles, square, diamonds) and analytical results (dashed lines) in the small Γ regime at D/K = 1 for different sizes of extended reservoirs, Nr.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Comparison of the exact numerical results (thick black line) for the conductance with the semi-analytical result, Eq.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Crossover behavior in disordered and anharmonic lattices.



 
    
       
          application/pdf
          
             
                Crossover behavior of the thermal conductance and Kramers’ transition rate theory
            
         
          
             
                srep ,  (2015). doi:10.1038/srep17506
            
         
          
             
                Kirill A. Velizhanin
                Subin Sahu
                Chih-Chun Chien
                Yonatan Dubi
                Michael Zwolak
            
         
          doi:10.1038/srep17506
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep17506
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep17506
            
         
      
       
          
          
          
             
                doi:10.1038/srep17506
            
         
          
             
                srep ,  (2015). doi:10.1038/srep17506
            
         
          
          
      
       
       
          True
      
   




