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Master equations are increasingly popular for the simulation of time-dependent electronic transport in
nanoscale devices. Several recent Markovian approaches use “extended reservoirs”—explicit degrees
of freedom associated with the electrodes—distinguishing them from many previous classes of master
equations. Starting from a Lindblad equation, we develop a common foundation for these approaches.
Due to the incorporation of explicit electrode states, these methods do not require a large bias or even
“true Markovianity” of the reservoirs. Nonetheless, their predictions are only physically relevant when
the Markovian relaxation is weaker than the thermal broadening and when the extended reservoirs
are “sufficiently large,” in a sense that we quantify. These considerations hold despite complete
positivity and respect for Pauli exclusion at any relaxation strength. Published by AIP Publishing.
https://doi.org/10.1063/1.5000747

Nanoscale electronics have made inroads into a diverse
range of applications, from tunneling-based DNA sequenc-
ing1–8 to high-performance microelectronics.9–18 The theo-
retical description of these devices is complicated by strong
environmental effects, which profoundly influence electronic
transport and lead to behavior beyond the static Landauer
formalism. While a formally exact solution for such time-
dependent transport exists, it requires the use of computation-
ally demanding two-time Green’s functions,19,20 which are
impractical for many applications. The description of sens-
ing devices also necessitates an accounting of atomic fluc-
tuations and unknown structural details, complicating their
simulation.

One major goal is the development of a theoretical frame-
work that can circumvent these limitations while remain-
ing versatile enough to augment contemporary electronic
structure methods. Quantum master equations and density-
matrix propagation afford such an approach21–23 and encom-
pass a diversity of well-established schemes that lie largely
in the Markovian limit,24–30 with notable non-Markovian
extensions.31–33 While these methods have recently come
to the forefront, their conceptual history dates to the early
work of Kohn and Luttinger,34 with subsequent developments
that defined a device and its contacts as an open quantum
system.21,22

We focus on a specific Markovian master equation,

Single Particle Density Matrixz                             }|                             {
˙̄⇢ = � ı

~
[H̄ , ⇢̄] � �( ⇢̄ � ⇢̄0),

Single Particle Correlation Matrixz                            }|                            {
Ċ = � ı

~
[H̄, C] � �(C � C0),

(1)
in a particular context where both explicit and implicit
extended reservoirs are present (introduced below).35 This
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master equation corresponds to a “relaxation approximation”
where the system relaxes to ⇢̄0 (C0)36 at some rate �. We
have written this expression in terms of both the single-particle
density matrix, ⇢̄, and the correlation matrix, Ckl = tr [c†kcl ⇢],
since many recent studies have focused on noninteracting sys-
tems. The single-particle Hamiltonian H̄ is defined through
H =

P
k,l H̄lkc†kcl , where ck (c†k ) are the creation (annihila-

tion) operators for the state k.37 We reserve ⇢ and H for the
full, many-body density matrix and Hamiltonian.38 Strictly
speaking, ⇢, C, and H are defined for an arbitrary number
of particles, allowing for fluctuations during time evolution.
A current will flow when the reservoir component of ⇢̄0 is
“polarized” by different chemical potentials. This approach
was applied to mean field electrons in Refs. 39 and 40 by
casting ⇢̄0 in a specific form, while other studies employ an
alternative ⇢̄0 that includes coherences between the device and
reservoirs.41–47

While related relaxation-type approximations have a
lengthy history,21,22,24–26,34 this specific dual-reservoir setup
is new and foundational to a family of promising real-time
simulation methods.35,39–54 Here, we provide a rigorous jus-
tification to this setup, leading to both a well-defined domain
of applicability and a connection between different variants
of the formalism. More explicitly, this yields a mathemati-
cal rationale for their use in arbitrary systems (e.g., in terms
of reservoir sizes and many-body interactions) and identifies
relevant physical limitations, laying the foundation for future
applications and implementations.

One issue with Eq. (1) is that—while it is Markovian—
it is not in the standard Lindblad form.55,56 As such, it is
not obviously positive and may yield both unphysical results
and negative probabilities under certain conditions. For non-
interacting electrons, the use of Eq. (1) has been shown to be
positive for asymptotically large reservoirs.45 However, rather
than starting from Eq. (1), we would like an expression that
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FIG. 1. Schematic of electronic transport. (a) “Extended reservoir” regions L
andR drive a current I through the systemS. Since the extended reservoirs are
finite, external environments EL and ER act to relax them back to equilibrium,
maintaining a true steady state. (b) Each extended reservoir state k is dressed by
an infinite environment Ek in equilibrium (yielding non-Markovian dynamics)
or with properly balanced injection, �k +, and depletion, �k , rates directing
the state back to equilibrium (yielding Markovian dynamics).

is already in Lindblad form, which will allow us to guarantee
complete positivity.

We begin by examining the model depicted in Fig. 1 and
analyzed in Ref. 35, where two electronic reservoirs, left (L)
and right (R), drive current through a device S that contains
the system of interest (for instance, a nanoscale junction and its
electronic leads). The reservoir regions are finite and explicitly
part of the simulation. We term these “extended reservoirs” to
distinguish from the typical assumption that they are infinite
and implicit.19,20 In order to have a true steady state, implicit
environments EL(R) are introduced to relaxL (R) to their equi-
librium distributions—the notion of equilibrium is central to
the use of these master equations. The Hamiltonian for this
setup is

H = HS + HL + HR + HI, (2)

where HS is the Hamiltonian forS, potentially including many-
body interactions, HL(R) =

P
k2L(R) ~!kc†kck are the “extended

reservoir” Hamiltonians, and HI =
P

k2LR
P

i2S(~vkic
†
kci

+h.c.) is the interaction that couples them. The index k includes
all labels (electronic state, spin, and reservoir), while !k and
vki denote the level and hopping frequencies.

The LSR system is open. Under the influence of EL(R),
its dynamics is given by the Markovian master equation

⇢̇ = � ı
~

[H, ⇢] +
X

k

�k+

 
c†k ⇢ck �

1
2

(
ckc†k , ⇢

)!

+
X

k

�k�

 
ck ⇢c

†
k �

1
2

(
c†kck , ⇢

)!
(3)

for the full, many-body density matrix ⇢. The first term on
the right is the Hamiltonian evolution of ⇢ under H and the
second (third) term reflects particle injection (depletion) into
the state k at a rate �k+ (�k ). To ensure that the reservoirs
relax to equilibrium—a pseudo-equilibrium, as we will see—
in the absence of S, �k+ ⌘ �f ↵(!k) and �k� ⌘ �[1 � f ↵(!k)],
where f ↵(!k) is the Fermi-Dirac distribution in the ↵ 2 {L,R}
reservoir and with � nonzero only for reservoir states. We
assume a general case where each reservoir may be at a dif-
ferent chemical potential or temperature. This specific master
equation has appeared in previous efforts.35,48–54 In particular,

Ref. 35 derives the closed-form solution for both the interact-
ing and noninteracting cases, as well as those for the related
non-Markovian problem.

To connect Eq. (3) to noninteracting approaches,39–47

we first differentiate the single-particle correlation matrix
C, employ Eq. (3), and use that tr

⇣
c†kcl [H, ⇢]

⌘
= [H̄, C]kl,

yielding

Ċ = �ı[H̄, C]/~ + R[C]. (4)

The quantity R[C] is the relaxation,

(R[C])kl = �k+�kl �
Ckl

2
�
�k+ + �k� + �l+ + �l�

�

= �

"
f ↵k �kl�k2LR �

Ckl

2
(�k2LR + �l2LR)

#
, (5)

where �i± = 0 when i 2 S, �k2↵ is 1 when k 2 ↵ (and zero
otherwise), and �kl is the typical Kronecker delta.

Taking the block form

C = *.
,
CL,L CL,S CL,R
CS,L CS,S CS,R
CR,L CR,S CR,R

+/
-

, (6)

where C↵,↵0 are for a subset of states, i.e., in the regions ↵, ↵0

2 {L,S,R}, the relaxation component becomes

R[C] = �� *..
,
(CL,L � CL0 ) 1

2CL,S CL,R
1
2CS,L 0 1

2CS,R
CR,L

1
2CR,S (CR,R � CR0 )

+//
-

. (7)

The “relaxed” distributions are C↵0 = diag[f ↵(!k)]. For sim-
plicity, Eqs. (5) and (7) are written in the single-particle
eigenbasis of the decoupled L, S, and R regions.

The equation of motion defined by Eqs. (4) and (7) is
exactly that of Refs. 41–47. Since the starting expression is in
Lindblad form, this demonstrates that these prior approaches
use a completely positive, trace-preserving master equation for
the single-particle matrices. Our derivation shows that these
properties always hold, including for finite reservoirs as well
as those that are asymptotically large.57 Moreover, by virtue
of the use of creation/annihilation operators in Eq. (3), Pauli
exclusion is obeyed even though the particle number is not
conserved. Furthermore, if we make an approximation where
the off-diagonal coherences are negligible, the phenomeno-
logical expression in Eq. (1) using C0 from Refs. 39 and 40
is recovered. This is not, however, guaranteed to preserve
positivity.

Too V, or not too V? In the preceding discussion, we
adopted a Lindblad equation from the outset. To take a
more foundational perspective, we can use the Born–Markov
approach58 to derive this equation. In doing so, we see that
there must be two implicit reservoirs with a high voltage
between them. While this might appear to nullify the use
of Eq. (3), we demonstrate that our approach is physically
applicable. The following derivation is presented for a single
extended reservoir state, which is sufficient for completeness
as these states are separately relaxed.

Each extended reservoir state k is connected to an implicit
reservoir, the environment Ek [EL(R) from Fig. 1(a) are com-
posed of allEk for k 2 L(R)]. The Hamiltonian for this dressed,
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extended reservoir state [Fig. 1(b)] is

Hk = ~!kc†kck +
X

l2Ek

~!lc
†
l cl +

X

l2Ek

~⌫l
⇣
c†l ck + c†kcl

⌘

⌘ ~!kc†kck +
X

l2Ek

~!lc
†
l cl + H 0, (8)

with H 0 = c†kE + E†ck and E =
P

l2Ek
~⌫lcl . In the follow-

ing, we work in the interaction picture, E(t)=U†Ek
EUEk with

UEk = exp(�ıHEk t/~), so that E(t)=
P

l ~⌫lcl exp(�ı!lt) [sim-
ilarly, ck (t)= ck exp(�ı!kt)].

We begin with the Born–Markov master equation59

⇢̇k(t) = � 1
~2

⌅ 1

0
dt 0 trEk

⇥
H 0(t),

⇥
H 0(t � t 0), ⇢k(t) ⌦ ⇢Ek

⇤ ⇤
,

(9)
where ⇢Ek denotes the initial state of Ek . This approxima-
tion requires a weak coupling between k and Ek (essentially,
second order perturbation theory) and the assumption of an
uncorrelated, time-local composite state of the system and
environment. The latter needs justification, which Eq. (11) will
provide. Expanding the commutators and taking the trace in
Eq. (9) give

⇢̇k(t) = (�k�/2)
f
ck ⇢kc†k � c†kck ⇢k

g
(t) + h.c.

+ (�k+/2)
f
c†k ⇢kck � ckc†k ⇢k

g
(t) + h.c., (10)

where the Hamiltonian component of the evolution will
be recovered after returning from the interaction picture.
The notation [·](t) indicates that all operators within the
brackets are in the interaction picture. The relaxation
�k± = (2/~2) s 10 dt 0J±(t 0) exp(⌥ı!kt 0) is given in terms of
the correlation functionsJ+(t 0) = trEk

f
E†(t 0)E⇢Ek

g
andJ�(t 0)

= trEk

f
E(t 0)E†⇢Ek

g
. An ideal Markovian environment exhibits

only time-local correlations,

J+(t 0) =
⌅ 1

�1
d! J(!)f (!)eı!t0 ⌘ �(t 0)~2�k+, (11)

where a similar expression holds for J�(t 0) [but with
f ! (1� f ) and a change of sign in the exponent]. To obtain
a �-function requires that the product J(!)f (!) is constant,
which can only be physically satisfied if the spectral function
is flat, J(!) ⌘ ~2�k+/2⇡, and f (!) ⌘ 1 for all !.60 In other
words, the implicit reservoir is completely full. This is evident
from the definition of a Markovian reservoir—an environment
that couples to the system equally at all frequency scales. The
presence of the Fermi level breaks this symmetry. Thus, this
level must lie at ±1, as adopted in other efforts.32

Considering J�(t 0), we find that J(!) ⌘ ~2�k�/2⇡ and
1 � f (!) ⌘ 1. This implies that two distinct sets of states are
required to obtain Eq. (3): In one set, the states are completely
empty, acting only to deplete particles from k [the first line of
Eq. (10)]. In the other set, the states are completely full and thus
they only inject particles into k [the second line of Eq. (10)].
References 61–64 address this process when the implicit reser-
voirs connect directly to what we would callS, concluding that
the equation of motion corresponds to a high bias V. In our
approach, however, the implicit reservoirs are not connected
directly to S, but rather indirectly through an intermediary—
the extended reservoirs. The bias is thus wrapped into the

simulation and we do not require a high value of V. We will see
this more explicitly below where we show that, when quantify-
ing the errors of the Markovian equation (3) for steady states,
nowhere does the bias show up, but rather only the temperature
and extended reservoir size. The requirement for Markovian-
ity may also be relaxed since explicit reservoir states retain a
memory up to time 1/� of the dynamics.

True limitations. Equation (3) is completely positive, is
trace preserving, respects Pauli exclusion, and does not require
a high V for its use. Nonetheless, these properties are not suf-
ficient to ensure physically meaningful behavior. To quantify
this statement, we make use of the exact, closed-form solu-
tion of Eq. (3) and its non-Markovian counterpart, both given
in Ref. 35. The latter also uses the model Hamiltonian from
Eq. (8); however, it does not require two distinct full and empty
components of Ek (nor a weak coupling between k and Ek , a
flat spectral function, or the wide-band limit). Rather, Ek need
only be infinite and in an equilibrium state described by the
Fermi-Dirac distribution f L(R).

For this non-Markovian case, the current is

I = � e
2⇡

⌅ 1

�1
d!

f
f L(!) � f R(!)

g
(12)

⇥Tr
f
�L(!)Gr(!)�R(!)Ga(!)

g
,

where Gr (a)(!) are the—potentially many-body—retarded
(advanced) Green’s functions for S [see Ref. 35 for the
closed-form solution to the Markovian case, Eq. (3)]. The
spectral densities of the couplings between S and L(R) are
�L(R)

ij (!) = ı
P

l2L(R) vjlvli[gr
l (!) � ga

l (!)], defined in terms
of the “unperturbed”—but dressed—extended reservoir state
Green’s functions, gr(a)

k (!) = [!�!k ± ı�/2]�1. One may also
obtain the lesser Green’s function, g<k (!) = �f L(R)(!)[gr

k(!)
� ga

k(!)]. For simplicity, we only address the wide-band
limit (the more general case is in Ref. 35). Notable in
these expressions is the term �, which accounts for relax-
ation and is key to subsequent discussion. These results
diverge from the Meir–Wingreen formula19,20 in the use
of extended reservoirs as a finite-sized intermediary with
relaxation.

While relaxation processes occur in real materials, these
are not necessarily of the form in Eq. (8). Moreover, by taking
Markovian relaxation as a further approximation, we can-
not conclude that Eq. (3) will be physical for a given �. We
thus interpret the relaxation as a control parameter, diligently
chosen to obtain meaningful results from Eq. (3). Numerical
simulations [Fig. 2(a)] illustrate how the current in the full
non-Markovian model behaves versus �. There are three dis-
tinct regimes: a regime linear in �, a plateau regime, and a
1/� regime. In the intermediate plateau regime, the “intrinsic
conductance” of the setup determines the current (for non-
interacting systems, this would be the Landauer current). We
note that the physics of the turnover versus � is analogous to
Kramers’ turnover for reaction rates in solution65 and holds
for thermal66–68 as well as electronic transport.35,69

When simulating Markovian dynamics using Eq. (3),
instead of the non-Markovian problem, the three regimes are
still present, but a large � can result in non-zero currents at zero
bias [Figs. 2(b) and 2(c)]. The origin of these currents is due to
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FIG. 2. (a) Steady-state current, I, as a function of the reservoir relaxation parameter, �, Eq. (12), with an applied bias of VL(R) = ±v0~/4 and an increasingly
large number of explicit reservoir sites Nr 2 {32, 128, 512}. Here, we use a 1D model with an asymmetric shift: wL(R)

k = �2v0 cos [k⇡/(Nr + 1)] ± v0/10 and
vki = v0

p
2/(Nr + 1) sin [k⇡/(Nr + 1)] (with k 2 {1, . . . , Nr } for bothL andR), kBT = v0~/40, and a single site at zero energy in S. In the limit of Nr ! 1 (black

line), the plateau extends to � = 0, yielding the Landauer/Meir-Wingreen current exactly (red dashed line). The dotted line demarcates where the Markovian
master equation is valid, which can be reached numerically by increasing the number of reservoir sites. [(b) and (c)] Anomalous zero-bias (VL(R) = 0) currents
versus time t for (b) a weak relaxation (� = 0.1v0) and (c) a strong relaxation (� = v0). The red dashed line indicates their limit as t ! 1. In the non-Markovian
case, however, there is zero steady-state current. (d) Anomalous broadening of g<k in L for strong relaxation (� = v0) as shown by Eq. (13). The solid blue line
is the correct “broadening before occupying,” while the dashed green line is the Markovian counterpart, which extends the occupation well beyond the Fermi
level (black dotted line).

improper occupation of the extended reservoir levels. Calculat-
ing the real-time correlation functions from Eq. (3), we see that
the advanced and retarded Green’s functions have a functional
form that is identical to the non-Markovian case.35 In fact, the
difference between the Markovian and non-Markovian limits
is encapsulated by the replacement

g<k (!) =

Non-Markovianz                }|                {
ı�f L(R)(!)

(! � !k)2 + �2/4
)

Markovianz                }|                {
ı�f L(R)(!k)

(! � !k)2 + �2/4
. (13)

In the Markovian case, the extended reservoir state is being
relaxed to the occupation f L(R)(!k) and then broadened by �.
For the non-Markovian case, the �-dressed state has the proper
occupation f L(R)(!). In other words, the non-Markovian case
dresses and then occupies and the Markovian case occupies
and then dresses. Figure 2(d) demonstrates that the Marko-
vian limit gives an additional occupancy above the Fermi
level, leading to zero-bias currents under certain conditions.
Thus, the Markovian master equation, Eq. (3) or Eq. (4), can
yield unphysical behavior despite the fact that it is always
completely positive and obeys Pauli exclusion. Another way
to state the origin of this behavior is that the Markovian
master equation relaxes the extended reservoir into pseudo-
equilibrium—an equilibrium defined in terms of isolated
extended reservoir states rather than those in the presence of
the environment that provides the relaxation.

We can define precisely when the replacement in Eq. (13)
yields a reasonable approximation, thus providing a satis-
fying quantification of the validity of Eq. (3): So long as
the �-induced broadening is less than the thermal broaden-
ing �⌧ kBT/~, with temperature T and kB as the Boltzmann
constant (or, in terms of time scales, ��1� 25 fs at room tem-
perature), the Markovian limit accurately gives the steady-state
solutions.35 This is independent of any details of S—it may
be interacting, may be non-interacting, may have electron-
phonon coupling, etc. The validity hinges on the replacement

made in Eq. (13), which, in turn, relies only on the fact that the
reservoir states are non-interacting. This is generally a good
approximation. While we do not quantify it here, the dynam-
ics of interest will be correctly captured by Eq. (3) as long
as they are faster than the relaxation, as the latter only cuts
off behavior after a time � 1. These limits must be carefully
enforced in order to ensure physically meaningful dynamics
and steady-state currents.

The considerations above lead to a natural estimate for the
required number of extended reservoir states, Nr . So long as
the extended reservoirs are sizable, one can take �⌧ kBT/~
and be within the plateau regime. A simple estimate is given
by the turnover point between the linear and plateau regions.
This generically occurs when � ⇡W/Nr , where W is the band-
width of the reservoirs, i.e., when � is on the order of the
mode spacing in the extended reservoirs35,69 (of course, inho-
mogeneity in the mode spacing can change this69). Such
behavior was recognized in earlier studies that employed
� >W/Nr .39,40,48

Putting these conditions together gives Nr ⇡ ~W/kBT
(hence, Nr should be very large at low temperature). A less
stringent condition on � would only require the current be
on the plateau, which often extends to relatively large values
of �. It is a mistake, however, to conclude that an arbitrary,
large value of � will be acceptable, even if this condition
holds. A sufficiently large �will improperly occupy high energy
states, which—when asymmetric reservoirs are present—will
give rise to unphysical zero-bias currents.70 Even though �
plays the role of relaxation in the extended reservoirs, a small
(or, in a sense, “intermediary”) value is still necessary.

We see that Markovian master equations can be a powerful
tool for the simulation of electronic transport. Furthermore, the
various approaches employed in the literature can be unified
as equivalent expressions of Eq. (3) or some approximations
thereof. These extended reservoir-based Markovian master
equations do not require a large bias or even Markovianity. The
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true limit of the Markovian limit, Eq. (3), is the requirement
that �⌧ kBT/~ with Nr that is large enough to accommodate
this slow relaxation and still yield the intrinsic conductance.
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13K. Y. Tan, K. W. Chan, M. Möttönen, A. Morello, C. Yang, J. van Donkelaar,
A. Alves, J.-M. Pirkkalainen, D. J. Jamieson, R. G. Clark, and A. S. Dzurak,
Nano Lett. 10, 11 (2010).

14M. Pierre, R. Wacquez, X. Jehl, M. Sanquer, M. Vinet, and O. Cueto, Nat.
Nanotechnol. 5, 133 (2010).

15M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow,
L. C. L. Hollenberg, G. Klimeck, and M. Y. Simmons, Nat. Nanotechnol.
7, 242 (2012).

16M. M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H.-S. P. Wong, and
S. Mitra, Nature 501, 526 (2013).

17M. L. Perrin, E. Burzurı́, and H. S. J. van der Zant, Chem. Soc. Rev. 44, 902
(2015).

18J. Trasobares, D. Vuillaume, D. Théron, and N. Clément, Nat. Commun. 7,
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