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Quantum Darwinism recognizes that we—the observers—acquire our information about the “‘systems
of interest”” indirectly from their imprints on the environment. Here, we show that information about a
system can be acquired from a mixed-state, or hazy, environment, but the storage capacity of an
environment fragment is suppressed by its initial entropy. In the case of good decoherence, the mutual
information between the system and the fragment is given solely by the fragment’s entropy increase. For
fairly mixed environments, this means a reduction by a factor 1 — h, where h is the haziness of the
environment, i.e., the initial entropy of an environment qubit. Thus, even such hazy environments
eventually reveal the state of the system, although now the intercepted environment fragment must be
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larger by ~(1 — h)~! to gain the same information about the system.
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How the classical world arises from an ultimately quan-
tum substrate has been a question since the advent of
quantum mechanics [1-7]. Decoherence is now commonly
used to study this quantum-classical transition [8—10]. Its
theory, however, treats the environment as a sink where
information about the system gets lost forever. Yet the
information deposited in the environment can be inter-
cepted, and it is our primary source of information about
the Universe. Indeed, decohering interactions with the
environment can amplify and store an impression of the
system. Amplification was invoked already by Bohr [11] in
the context of measurements. Early [12], as well as more
recent [9,13,14], discussions of decoherence note the im-
portance of redundancy, and provide an information-
theoretic framework for how the environment acts as an
amplifier and as a source of information about the “system
of interest” [15-19].

Quantum Darwinism reflects this new focus on the
environment as a communication channel [15-17]. When
one receives a fragment of the environment by, for in-
stance, intercepting with one’s eyes a portion of photons
that are scattered off a system of interest (e.g., the text of
this Letter), one acquires information about it. Previous
studies found that, with an initially pure environment, one
can acquire information about the preferred observables of
the system even from small environment fragments [17].
This explains the emergence of objectivity, as it allows
many initially ignorant observers to independently obtain
nearly complete information and reach consensus about the
state of the system by intercepting different fragments of
the environment. Classicality of states can now be quanti-
fied in terms of the redundancy of information transferred
to and recorded by the environment. However, it is unclear
how well one can accumulate information starting with a
mixed, or hazy, environment, such as one at finite tempera-
ture. Yet the photon environment that is responsible for the
vast majority of the information we gain has precisely such
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a hazy character. This Letter shows that even hazy environ-
ments will, in the end, communicate a very clear image.

We study how information flows into a hazy environ-
ment using the quantum mutual information, I(S:F) =
Hs(1) + Hy(t) — Hs (1), between the system S and
some fragment F of the environment £. Here, H(¢) is the
von Neumann entropy at time ¢ of the subsystem specified
in its subscript. We begin with some general considerations
about information transfer from S to F due to a purely
decohering Hamiltonian (i.e., a Hamiltonian, Hgge, that
commutes with the preferred pointer observable of S
[9]). Under evolution generated by such a Hamiltonian,
S alone, as well as S plus a small fragment F of &, will
eventually become effectively decohered when coupled to
E/F,ie., therest of £. In this case of “good decoherence,”
the state of a qubit S will evolve as

s s s 0
O:(oo 01)_) tz(oo ) 1
ps(0) S0 Sut ps() 0 s (L
where the final pg is diagonal in its pointer basis (with
obvious generalization to larger system sizes). The system
plus the fragment will therefore become

Soo'UUPJF(O)'U(J)r 0

psF(t) = < 0 sn’ulpf(O)UT )’ .

where ‘U; is the evolution operator projected onto the ith
pointer state of S. This is because the remaining portion of
the environment, £/F, suffices to decohere S plus F
while preserving the pointer basis of S. The entropy of
the resulting state, Eq. (2), is thus identical to the entropy
of the state ps(t) ® p£(0). The mutual information be-
tween S and F then becomes

1(8:F) = Hy(t) — Hy(0) 3)
in this case of good decoherence. This formula reduces to

I(S:F) = Hg(t) for initially pure £ [20]. Equation (3)
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shows that information about S stored in an initially un-
correlated fragment F is represented solely by F’s in-
crease in entropy, which is due to the interaction with S.
Further, it shows how the capacity for ‘F to store informa-
tion is suppressed by its initial entropy, H #(0). In effect,
when the initial state of a fragment ‘F is completely mixed,
it has zero capacity for information as I(S: F) = 0 always.
Equation (3) is a general result for purely decohering
Hamiltonians in the case of good decoherence.

We will now see more explicitly what these results entail
by studying a solvable model of a single spin interacting
with an environment of *€ spins according to the purely
decohering Hamiltonian

1 &
Hse =5 > 050} @)

k=1
The advantage of this model is that not only is the evolution
solvable but the entropy of /F can be efficiently computed,
enabling the investigation of large £ (e.g., we have gone up
to F with *F = 200 spins, giving a Hilbert space dimen-

sion of 2290y [21].

We consider here an S initially uncorrelated with a

symmetric &, i.e., pse(0) = ps(0) ® p}eﬁg, where

pr=<’”00 ’”01) 5)

o T

in the o basis. The haziness £ is the preexisting entropy of
an environment qubit,

h = —t(p,logp,). (©6)

It attains its maximum value of 1 bit when the qubit is
completely mixed. Other factors, such as the dimension or
alignment of the eigenstates of p, with the basis singled out
by H g, affect the information acquired by £, as we discuss
elsewhere along with our numerical procedure [21].

We start by elucidating the concept of good decoher-
ence. At time ¢, the reduced density matrix of S is

_ s sor Ae(2)
pS(t)_<510/€%(f) 015115 )’

where Ag(?) = [TregAi() and Ay(r) = cos(t) + 1(ry —
roo) sin(z) for all k in our model. The decoherence factor
Ag(t) represents how much S has been decohered by E£.
The reduced density matrix ps#(#) has a similar structure,
but the decoherence factor is Ag/ #(7), i.e., a product of
#€ — *T instead of *¢ individual A(¢). For sufficiently
small A,(r) and/or #*€ > *F, this will result in both p ()
and ps (1) being nearly diagonal in the pointer basis of S.
This is “good decoherence.” Moreover, ps(f) can be
diagonalized exactly for arbitrary conditions [22], giving

1(S:F) = [Hg(t) = Hy(0)] + [H(ke(r)) — H(kg (1),
®)

(N

where H(x) = —xlog,x — (1 — x)log,(1 — x) and

1
ka(0) =31+ (i = 500 +4lsoiPIAAWP. ©)

In our symmetric model, Hy(0) = #Fh. Equation (8) dem-
onstrates that I(S:F) is given exactly by the good deco-
herence expression, Eq. (3), plus a term giving the
deviation from good decoherence. Essentially everywhere
except for short r and F = &£, decoherence is good and the
deviation term is nearly zero since both Ag(#) and Ag, #(1)
are almost zero. For our model system with ryy = 1/2,
there is a time ¢t = 7/2 when A,(r) = 0 and thus the
condition for good decoherence is satisfied exactly except
when #F = #&.

The evolution of I(S: F) for an initially pure £ is shown
in Fig. 1(a). At first, there are no correlations between S
and &, giving I(S:F) = 0. As S decoheres, however,
information is transferred to £ As a consequence,
I(S:F) increases. This increase is initially steep, but the
total missing information about S is limited by its entropy
Hg. Therefore, a plateau develops (the “classical plateau”
[17]) as I(S:F) approaches Hy. It is seen in Fig. 1 as the
flat region of the mutual information plot. The level of the
plateau occurs at Hg = H(s(). Thus, by intercepting just a
few spins from £ one can gain nearly all the information
about S. More precisely, the redundancy Ry is the number
of times the state of S can be deduced within an accuracy
given by the information deficit J, i.e.,

e
ﬁ:}: F) f 6 '
where #7j is the least number of spins needed to acquire a
mutual information greater than (1 — §)Hg and f; is the
corresponding fraction of £. For this model, as the time
approaches 1 = /2 any single spin from & has nearly all
the information about S (i.e., & is small for one environ-
ment spin). The redundancy in this case is simply *£, the
size of £ many observers can each capture a single degree
of freedom from £ and gain the same information about S.
The existence of the plateau implies redundancy and dem-
onstrates the validity of the quantum Darwinism paradigm.
Such a plateau has been found starting with a pure £ in
other cases, including models with higher dimensional
systems [16—18].

The key question we pose here is, what is the effect of
starting with a hazy £? Figure 1(b) plots I(S:F) versus ¢
for h = 0.8. The figure shows that the classical plateau is
still quite large and that it occurs at the same level, Hg, as
for an initially pure £. After the plateau is reached, it stays
flat until #F ~ #£. The plateau region will always develop
for sufficiently large #€ so long as £ is not totally hazy (h #
D).

These findings are confirmed by an exact result for
I(S:F) at t = /2 and ryy = 1/2. In this case, p z(7/2)
can be diagonalized exactly [23]. The entropy of F is

Rs = (10)
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FIG. 1 (color online). Mutual information between S and a
fragment F for *& =100, pg(0) = |+X+], and roy = 1/2,
where |+) = (|0) + [1))/+/2. An initially (a) pure & h =0,
and (b) hazy &€, h = 0.8. At t =0, S and £ are not correlated
but, with time, correlations develop. As the system approaches
good decoherence, a long plateau region forms where informa-
tion is redundantly recorded in £. This level occurs at the value
of the entropy of & when decohered, which here is at Hg = 1.
For sufficiently large *€, the mutual information will eventually
reach Hg regardless of the initial haziness, except for a com-
pletely mixed initial £, h = 1. However, the plateau is attained
more slowly and only for larger fragments as £ gets more mixed.
When all of £ is captured, the mutual information jumps to its
maximum value of 2H (signifying complete quantum correla-
tion of £ with §) so long as a well-defined plateau exists.

i
Hy(m/2) = — Z(zf JArmlog Az (1)

n=0

where n labels the degenerate eigenvalues Ag(n) =
SooA AT 4+ 5 AT A% and Ay = 1/2 * |ry| are the
eigenvalues of p,. Figure 2(a) shows I(S:F) versus #F and
h at t = /2. The plateau region is reached very rapidly
except for & near 1, i.e., very near to a completely mixed &.
The redundancy for the information deficit 6 = 0.1 is
plotted in Fig. 2(b) for t = 7/2 and t = /3. For h
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FIG. 2 (color online). (a) Mutual information at t = 7/2 ver-
sus *F and h for the same conditions as in Fig. 1. (b) Redun-
dancy versus & for the information deficit 6 = 0.1 and at ¢ =
7r/2 (the inset shows ¢ = 77/3). The black line (squares) is the
exact data. The redundancy can only take on rational values with
#€ in the numerator because of the discrete nature of the spin
environment, which is particularly visible at high redundancy.
The blue dashed line is that obtained by the scaling 1 — &, which
is a good approximation when £ is near one. Thus, even initially
mixed & can store information about S in many copies. However,
it takes larger *F to acquire the same information about S.

near 1, the redundancy scales as R « 1 — h: The informa-
tion storage ability of £ is suppressed by its initial entropy.
This is also reflected in I(S: F) for very mixed states where
I(S:F) = (1 — h)*F, when *F is small and under the
conditions in the figure.

These results indicate that a hazy £ can be thought of as
a noisy communication channel with degraded capacity,
1 — h. The loss of the channel capacity can be depicted in
terms of the overlap of two peaks in a bimodal probability
distribution over subspaces of F with n identical records
indicating a o eigenstate and *F — n records indicating
the orthogonal eigenstate. At t = /2 the probability dis-
tribution is given by the two peaks
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FIG. 3 (color online). (a) Bimodal probability distribution for
the state of F to be in a subspace n, where n =0,..., ¢
indexes the number of identical records. The left (blue) peak,
P, , is correlated with |0) in S and the right (red), P, with |1).
When €& is initially nearly pure, 7 ~ 0, the two peaks are well
separated. Upon increasing 4, the two peaks start to overlap.
(b) The information deficit & versus the overlap O =
3P, (n)Pg(n) for #F = 50 and different /. A larger overlap
is associated with a decreased capacity for information about S,
i.e., an increased information deficit. The parameters are the
same as Fig. 1.

P.(n) = s00< ﬁf )/\u"f*” (12a)
and
Pr(n) = sn<ﬁf)ﬁ—")\1, (12b)

withn =0,..., “f. The bimodal structure is the result of
information about S branching into sectors of £’s Hilbert
space. For initially very pure £ and reasonably large *F,
these two sectors are distinct, allowing one to resolve the
peaks, as shown in Fig. 3(a). In this case, I(S: F) is near its
plateau value. As the peak overlap increases, the evidence
about the state of S imprinted in F becomes less conclu-
sive. Thus, a more hazy environment [Fig. 3(b)] or a
smaller fragment result in an increased information deficit.

To conclude, we studied quantum Darwinism in the case
of a hazy environment. For good decoherence and purely
decohering Hamiltonians, we demonstrated that the mutual
information acquired by some fragment of the environment
is directly related to the entropy increase of that fragment.
This shows that the capacity of the environment to accept
information is suppressed by its initial entropy. Thus, a
hazy environment acts like a noisy communication chan-
nel, transmitting all the information about the system, but
at a lower rate. By examining a model system, we illus-
trated that, despite this diminished channel capacity, the
region of redundant information storage is still reached for
quite mixed environments. This work leads to questions
related to recent research on representing environments in
compact forms in order to accurately simulate a dynamical
quantum system [24]: What role does the information
acquired play in the representation of the environment,
and, vice versa, does a compact representation yield the
same redundancy as the full £? Above all, however, our

results verify the environment’s capability to communicate
information.
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