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Abstract
There has been tremendous experimental progress in the last decade in identifying the structure
and function of biological pores (ion channels) and fabricating synthetic pores. Despite this
progress, many questions still remain about the mechanisms and universal features of ionic
transport in these systems. In this paper, we examine the use of nanopores to probe ion transport
and to construct functional nanoscale devices. Specifically, we focus on the newly predicted
phenomenon of quantized ionic conductance in nanopores as a function of the effective pore
radius—a prediction that yields a particularly transparent way to probe the contribution of
dehydration to ionic transport. We study the role of ionic species in the formation of hydration
layers inside and outside of pores. We find that the ion type plays only a minor role in the radial
positions of the predicted steps in the ion conductance. However, ions with higher valency form
stronger hydration shells, and thus, provide even more pronounced, and therefore, more easily
detected, drops in the ionic current. Measuring this phenomenon directly, or from the resulting
noise, with synthetic nanopores would provide evidence of the deviation from macroscopic
(continuum) dielectric behavior due to microscopic features at the nanoscale and may shed light
on the behavior of ions in more complex biological channels.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The behavior of water and ions confined in nanoscale
geometries is of tremendous scientific interest. On the one
hand, biological ion channels, which form from membrane
proteins, perform crucial functions in the cell [1, 2].
On the other hand, there have been recent advances in
aqueous nanotechnology such as nanopores and nanochannels,
which hold great promise as the basic building blocks of
molecular sensors, ultra-fast DNA sequencers, and probes of
physical processes at the nanoscale [3]. Indeed, nanopore-
based proposals for DNA sequencing range from measuring
transverse electronic currents driven across DNA [4–8]
to voltage fluctuations of a capacitor [9–11] to ionic
currents [12–19].

Recent experiments show that we are tantalizingly close
to realizing a device capable of ultra-fast, single-molecule
DNA sequencing with nanopores: identification of individual
nucleotides using transverse electronic transport [20, 21] has
been demonstrated. Discrimination of nucleotides using their

ionic blockade current when driving them individually though
a modified biological pore has also been demonstrated [22, 23].
In these systems, the presence of water and ions will affect
the signals and noise measured and thus understanding their
behavior is an important issue in both science and technology.

Many computational studies have been dedicated to
relating the three-dimensional structure [1, 24, 25] of
biological ion channels to their physiological function, e.g.,
ion selectivity. For instance, recent studies have examined
the role of ligand coordination in potassium selective ion
channels [26–29]. Biological channels, however, are complex
pores with many potential factors contributing to their
operation. Thus, only in a limited number of cases have
universal mechanisms of ion transport been investigated, such
as the recent work on the role of ‘topological constraints’ in
ligand coordination [30–32].

Fundamental developments in the fabrication of synthetic
nanopores [33–40], however, open new venues for investigat-
ing the behavior of ion channels and dynamical phenomena
of ions, (bio-)molecules, and water at the nanoscale. For
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instance, what are the dominant mechanisms determining ionic
currents and selectivity? What role do binding sites play
versus hydration in constrained geometries? How accurate
are ‘equilibrium’ and/or continuum theories of ion transport?
Well-controlled synthetic pores can be used in this context
to examine how ion transport is affected, for instance, by
changing only the pore radius, in the absence of binding sites
and significant surface charge within the pore.

In this paper we examine the role of dehydration in ionic
transport through nanopores. In particular, we investigate the
recent prediction of quantized ionic conductance by two of
the present authors (MZ and MD) [41], namely that drops in
the conductance, as a function of the effective pore radius,
should occur when successive hydration layers are prevented
from entering the pore. This effect is a classical counterpart of
the electronic quantized conductance one observes in quantum
point contacts as a function of their cross-section (see, e.g.,
[42]). We examine different ions, both positive and negative,
and of different valency (namely, Cl−, Na+, K+, Ca2+,
and Mg2+). We find that the ion type plays only a minor
role in the radii of the hydration layers, and thus does not
affect much the pore radii at which a sudden drop in the
current is expected. Divalent ions, however, are the most
ideal experimental candidates for observing quantized ionic
conductance because of their more strongly bound hydration
layers. Further, the fluctuating hydration layer structure and
changing contents of the pore should give a peak (versus the
effective pore radius) in the relative current noise—giving an
additional method to observe the effect of the hydration layers.
Thus, we elucidate how quantized ionic conductance provides
a novel tool to deconstruct the energetic contributions to ion
transport.

The paper is organized as follows: in section 2, we give
a macroscopic (i.e., a continuum electrostatic) viewpoint on
the energetics of ion transport. In section 3, we examine how
ions induce local structures in the surrounding water known as
hydration layers—an effect that is not taken into account when
using continuum electrostatics to estimate energetic barriers to
transport. Further, we calculate the energies stored in these
layers and develop a model for the energetic barrier for ions
entering a pore. In section 4, we use a Nernst–Planck approach
to relate this barrier to the ionic current. In section 5, we
discuss how the presence of the hydration layers gives rise
to a peak in the relative noise in the ionic current at values
of the effective pore radius congruent with a layer radius. In
section 6, we then present our conclusions.

2. Ionic transport

The experimental setup we are interested in is that of ions
driven through a pore/channel of nanoscale dimensions under
the action of a static electric field3. Such a situation is
depicted in figure 1. A simple approach to ionic transport is
to envision the ions moving through an energetic barrier due
to going from the high-dielectric aqueous environment into
the inhomogeneous, low-dielectric environment of the pore,

3 Although similar conclusions should apply in other scenarios such as the
generation of a concentration gradient.
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Figure 1. Schematic of ion transport in the presence of hydration
layers. Only the first hydration layer is shown for simplicity. Ions in
bulk water form hydration layers that make the ion behave as a
‘quasi-particle’ that includes the ion and tightly bound water
molecules. This quasi-particle is then solvated in the high-dielectric
water. As the ion goes from the bulk solution to the pore it has to
partially shed its hydration layers, i.e., the quasi-particle has to break
apart. This gives a nonlinearity in the energetic barrier to transport.
A continuum picture neglects these features and considers only the
dielectric barrier that ions have to overcome by moving from bulk
water with dielectric constant εw into the inhomogeneous,
low-dielectric pore environment with εp � εw. Specialized proteins
facilitate this process in biological ion channels via the presence of
localized surface charges/dipoles and other mechanisms.

treating the surroundings as continuum media. The resulting
approach is inherently static: by analyzing the energetic
barrier to (near-equilibrium) transport one obtains information
about how different factors—the pore material (through its
dielectric constant), the pore dimensions, the presence of
surface charges, and the presence of the high-dielectric water
along the pore axis—would affect transport.

Indeed, one of the first calculations of the dielectric barrier
(using a ‘Born solvation’ model) was done by considering the
ion solvated in water and moved into a low-dielectric, pore-
less membrane [43, 44]. This provides an estimate of the
energies involved by calculating the energy change of solvating
the ion in continuum water, with dielectric constant εw ≈
80, to ‘solvating’ it in a continuum material with εp ≈ 2
(representative of lipid membranes4). For instance, the energy
change of a Cl− ion, with effective radius R ≈ 2 Å,5 moved
from continuum water to the continuum material is

�U = e2

8π Rε0

(
1

εp
− 1

εw

)
(1)

≈ 1.8 eV. (2)

This is quite a substantial energy change—about half the
solvation free energy of Cl− [1, 45]. The finite thickness of the
membrane does not change this value significantly. For thick

4 In pores—especially biological pores—the membrane dielectric constant,
εm, and the dielectric constant of the pore material, εp, can be different.
5 The effective radius can be estimated from, e.g., molecular dynamics
simulations that give a surface where the screening charge due to the hydrogen
or oxygen atoms of water fluctuates. For instance, figures 2 and 3 show this
surface (see also [69, 70]).
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membranes, it is lowered by [43, 44]

e2

4πε0εpl
ln

(
2εw

εw + εp

)
, (3)

for εw � εp, where l is the membrane thickness (and pore
length). For εp ≈ 2 and εw ≈ 80, this gives ∼5/ l eV Å ≈
0.1 eV for a membrane of thickness l = 50 Å. That is, the Born
estimate in equation (1) is lowered to ∼1.7 eV. However, the
membrane width [46] and composition can play a significant
role in this estimate. For the common synthetic pores made
of silicon dioxide (εp ≈ 4) or silicon nitride (εp ≈ 7.5) the
estimate in equation (1) is reduced from ∼1.8 eV to ∼0.9 eV
and ∼0.4 eV, respectively. These barriers are more than an
order of magnitude larger than kBT at room temperature, where
kB is the Boltzmann constant.

Due to this magnitude, it is clear that the energy scale
of solvation is one of the controlling factors in ion transport.
However, in addition to the above there is water present
in the pore. One expects, therefore, that the energy of
solvation would be decreased from simple estimates like
that of equation (1). Several groups have calculated this
contribution [43, 44, 46–48]. For instance, [49] shows that
the energy barrier of bringing an ion from continuum water
into a low-dielectric, continuum membrane is reduced from
∼40 kcal mol−1 ≈ 1.7 eV to ∼20 kcal mol−1 ≈ 0.9 eV by the
presence of water in the pore. This demonstrates that a pore
filled with a high-dielectric medium (e.g., continuum water)
can significantly lower the barrier to transport. Even still, the
barrier remains substantial.

In biological systems, however, the pores provide a
channel with a much lower barrier as indicated by the
conductance of many biological ion channels. These pores
are formed from specialized proteins whose role is precisely
to facilitate passage of ions (and further to selectively allow
passage of certain ions). Clearly, pores with internal charges
and/or dipoles can significantly reduce the energetic barriers
for transport. Indeed, the effect of surface charges has been
calculated in clean pores [50–52] and when present in sufficient
amounts would negate the effect we predict as the reduction
of the energetic barrier would be comparable to, or larger
than, the hydration layer energies. Therefore, our interest is
in clean pores with little to no surface charge where clear-
cut experiments can be performed to understand the effect of
hydration on transport. This rules out the direct use of some
biological ion channels, particularly those with very small
pores where single-file transport occurs [24, 53, 54], because
of the presence of localized charges and dipoles.

To conclude this section, we note that the continuum
description suffers from a number of issues at the nanoscale: it
is only valid beyond the correlation length of the material [55],
which for the strong fields around an ion is ∼8 Å for water
(see below), similar to the ∼5–8 Å in water only [56]; linear
continuum electrostatics is only valid when the polarization
field is co-linear with the electric field (not the case in the
hydration layers we discuss below); in a related issue, it is
only valid for weak fields (in the context of ion channels,
see, for example, section 3.4 in [49]); there is also an
issue of where the ‘surface’ separating the charge and the

dielectric membrane/continuum water is located, especially for
fluctuating atomic ensembles as is the case for protein pores
and molecular (rather than continuum) water. Thus, while
a continuum picture can highlight some general features of
the energetic barrier to ion transport—in some cases giving
compact analytical expressions—it breaks down when trying
to understand the effect of structure at the nanoscale. In
fact, macroscopic, continuum electrostatics is not designed
to study specific features or short-range interactions at these
length scales. This is precisely what we seek to address in the
following sections.

3. Hydration of ions

We begin our study of quantized conductance by first
illustrating how ions are hydrated in solution and then discuss
the energies involved in this process. The formation of
hydration layers around ions has been known for some
time (see, e.g., [1]), and is due to the strong local electric
field around the ion and to repulsive short-range interactions
among molecular/atomic species. We use molecular dynamics
(NAMD2 [57]) simulations to understand the structure of
hydration layers when different ions are inside and outside of
nanopores6.

Figures 2 and 3 show the water density oscillations
for several common ionic species7. There is a strong
peak in water density about 3 Å away from the ions,
with two further oscillations after that spaced about 2 Å
apart. These oscillations signify that there are strongly bound
water molecules forming around the ions. Table 1 lists the
hydration layer radii from both this study and experiment.
We find very good agreement with the experimental data
for all cases. The water density approaches the bulk value
(∼0.033 Molecules Å

−3
) at about 10 Å, which is also

consistent with the experimental value.
The oscillations in water density also give rise to

oscillations in the local electric field. Figures 2 and 3 show
this for monovalent and divalent ions where the time-averaged
electric field was calculated from the bare ion value plus a
sum over all partial charges given by the hydrogen and oxygen

6 For an ion in bulk water, we simulated a hexagonal box of 150 Å height and
43 Å radius with periodic boundary conditions in all directions. We then fixed
an ion in the center of the box and counterion(s) near the edge of the box, far
away from the ion of interest. For an ion in a pore, a cylindrical pore of radius
R was cut into a hexagonal silicon nitride film 97 Å thick and of 29 Å radius.
This was accomplished by removing all silicon and nitrogen atoms within a
distance R from the z-axis. An ion was fixed in the middle of the pore and
counterion(s) were fixed outside of the pore. The system was then solvated in
water resulting in a box of linear dimension 167 Å in the z-direction. An energy
minimization procedure was then run, the system was heated up to 295 K, and
finally the production run started. The first 600 ps were discarded to remove
artifacts from the initial conditions and the information from the subsequent
2 ns collected. Other simulation details are as in [8].
7 We calculated the density of water surrounding each ion by placing 1 Å

3

shells concentric with the ion. The inner shells have a larger width to give
the same volume. We then counted the number of atoms (either hydrogen
or oxygen) within each of the shells throughout the 2 ns simulation at time
intervals of 200 fs. Due to the smaller bin sizes, the plots have minor
differences from [41] at small distances from the ion.
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Figure 2. Top panels: water density oscillations versus distance for Cl−, Na+, and K+ in bulk water. Black, solid lines indicate the density
calculated from the oxygen atom positions for Cl− and hydrogen atom positions for the cations. The arrows indicate the minimum in the
density oscillations. The blue, dashed lines indicate the density calculated from the hydrogen atom positions for Cl− and oxygen atom
positions for the cations. Bottom panels: the electric field due to both the bare ion (red, dashed line) and due to the ion plus partial charges on
the water molecules (black, solid). The arrows again indicate the minimum in the density oscillations.

Table 1. Table of physical quantities from simulation and experiment. The theoretical hydration layer radii, Ri , for all three layers are defined
using the ion–oxygen distance for Cl− and ion–hydrogen distance for the cations. The first oxygen density maximum, RX O , is for all ions X
using the present theory and experiment (average values taken from [58]). The second maximum is also shown for the divalent ions from both
theory and experiment. The inner/outer radii that enter equation (4) are shown, the first of which is calculated such that equation (4) equals
�G (exp) when RO

iν → ∞ (see also text). The next three inner/outer radii are taken from the minima of the oxygen density for Cl− and the
minima of the hydrogen density for the cations. Further, we report the layer energies Ui (using εp = 1), and the Gibb’s free energy from
experiment [45], and the experimental mobilities [1] used in this work.

Ion Ri (Å) (th) RX O (Å) (th) RX O (Å) (exp) RI, RO (Å) −Ui (eV) (th) −�G (eV) (exp) μ (m2 V s−1) (exp)

Cl− 3.1, 4.9, 7.1 3.1 3.19 2.0, 3.9, 6.2, 8.5 1.73, 0.68, 0.31 3.54 7.92 × 10−8

Na+ 2.9, 5.1, 7.5 2.3 2.44 1.9, 3.8, 6.2, 8.4 1.51, 0.72, 0.30 3.80 5.19 × 10−8

K+ 3.3, 5.6, 7.8 2.7 2.81 2.4, 4.2, 6.6, 8.8 1.15, 0.61, 0.27 3.07 7.62 × 10−8

Ca2+ 3.0, 5.1, 7.5 2.2, 4.6 2.42, 4.55 1.8, 3.6, 6.1, 8.5 7.89, 3.23, 1.32 15.65 6.17 × 10−8

Mg2+ 2.7, 4.8, 7.1 1.9, 4.2 2.09, 4.20 1.5, 3.3, 5.7, 8.1 10.33, 3.62, 1.48 19.03 5.5 × 10−8

atoms of water8. In the figures, the first hydration layer gives
pronounced field oscillations for all species examined. The
other oscillations in the field are more well defined for K+,
Ca2+, Mg2+, and to some extent Na+, compared to Cl−.
Anions, such as Cl−, have a different structure of the water
around them compared to cations: in the first layer, they pull
one of the hydrogen atoms of each of the water molecules
closer while the other interferes with the formation of the
second layer, possibly hindering the ability of the second layer
to form a ‘perfect’ screening surface. The fact that the electric
field is not simply suppressed by 1/εw shows the difficulty
8 The electric field was calculated by summing the contributions from the ion
and all partial charges (on the hydrogen and oxygen of the water) within 15 Å
from every field point. The angular component to the field was several orders
of magnitude smaller because the time-averaged field has essentially spherical
symmetry. In [41] all water molecules were modeled as dipoles.

of a macroscopic (continuum) dielectric picture to predict
behavior at the nanoscale (similar to well-known features in
other systems such as Friedel oscillations and apparent from
the derivation of continuum electrostatics, where averaging is
required over length scales much larger than the correlation
length of the material [55]).

We now estimate the energies contained in these layers,
which we list in table 1. The electric fields seen in figures 2
and 3 show an oscillating behavior that is reminiscent of a set
of Gauss surfaces, i.e., layers of alternating charge that screen
the field of the ion. Thus, in order to estimate the energies
contained in the layers, we replace the microscopic structure
giving rise to the complex field by a set of surfaces as shown
in figure 4 that perfectly screen (with dielectric constant εw),
rather than over-screen, the ion charge.

4



J. Phys.: Condens. Matter 22 (2010) 454126 M Zwolak et al

Figure 3. Top panels: water density oscillations versus distance for Ca2+ and Mg2+ in bulk water. Black, solid lines indicate the density
calculated from the hydrogen atom positions. The arrows indicate the minimum in the density oscillations. The blue, dashed lines indicate the
density calculated from the oxygen atom positions. Bottom panels: the electric field due to both the bare ion (red, dashed line) and due to the
ion plus partial charges on the water molecules (black, solid). The arrows again indicate the minimum in the density oscillations.
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Figure 4. The magnitude of the approximate electric field (given by
a set of Gauss surfaces, see inset) used to represent the fields in
figures 2 and 3, and also used to calculate the energy contained in
each layer (equation (4)).

Within this picture, the energy of the i th hydration layer
of ionic species ν is [41]

U o
iν = q2

ν

8πε0

(
1

εp
− 1

εw

)(
1

RO
iν

− 1

RI
iν

)
, (4)

where qν is the ionic charge and RI(O)

iν are the inner (outer)
radii demarcating the hydration layer as obtained from the
water density oscillations. In order to obtain the innermost
radius we compute the total solvation energy, UT = −q2

ν (εw −
εp)/(8πε0εpεw RI

1ν), and compare with the experimental free
energies [45], which are dominated by the electrostatic energy.
These free energies, together with the layer energies (for εp =
1), are tabulated in table 1. Except for the third hydration
layer for monovalent ions, the layer energies are greater than
other free energy contributions such as the entropy change due
to the water structure or van der Waals interactions [59, 60].
In equation (4) we have also added a possible screening
contribution, εp, from the pore material and/or charges on the
surface of the pore. In [41] this was assumed to be one: the
low-dielectric pores reduce the energy barrier only by a small
amount and in a different functional form. In section 5 we
will discuss the effect of this screening on the detection of
quantization steps.

Previously, we proposed a model for how the energy is
depleted in a hydration layer as the effective radius of the
pore, Rp, is reduced [41]. In this model, the energy change
is proportional to the remaining surface area of a hydration
layer within a pore. It takes into account both that the water–
ion interaction energy of small water clusters is approximately
linear in the number of waters [60, 61] and that molecular

5
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dynamics simulations show a time-averaged water density with
partial spherical shells when an ion is inside a pore of small
enough radius (see figure 1 in [41]). Contributions from, e.g.,
van der Waals interactions with the pore and changes in the
water–water interaction, are small [59, 60]. Thus, the energy
of the remaining fraction fiν of the i th layer in the pore is
taken as Uiν = fiνU o

iν . The fraction of the layer intact is
fiν = Siν/4π R2

iν where Siν is the surface area (of the spherical
layer) remaining where the water dipoles can fluctuate. The
latter is given by

Siν = 2�(Riν − Rp)

∫ 2π

0
dφ

∫ θcν

0
dθ R2

iν sin θ, (5)

where �(x) is the step function and θcν = sin−1(Rp/Riν).
When Rp < Riν , the fraction of the surface left is

fiν(Rp) = 1 −
√

1 −
(

Rp

Riν

)2

. (6)

The total internal energy change will then result from summing
this fractional contribution over the layers to get

�Uν(Rp) =
∑

i

( fiν(Rp) − 1)U o
iν . (7)

We stress first that the effective radius Rp is not necessarily
the nominal radius defined by the pore atoms. Rather, it is
the one that forces the hydration layer to be partially broken
because it can not fit within the pore, and it could be smaller
than the nominal pore radius by the presence of, e.g., a layer
of tightly bound water molecules on the interior surface of
the pore. Second, our model misses internal features of the
hydration layers themselves. For instance, [62] examines the
first hydration layer structure in carbon nanotubes of different
radii. These authors find a large increase in the energy barrier
when the pore radius nears the inner hydration layer. They also
seem to observe sub-steps in the water coordination number
within the inner shell as the pore radius is reduced. Thus,
although our model contains only a single ‘smoother’ step,
experiments could very well observe these internal sub-steps
corresponding to the sudden loss of a single or few water
molecules out of a given hydration layer.

Another basic assumption in our model is that the
interaction energy of the water molecules in each layer is
the same regardless of whether the ion is inside or outside
of the pore. Figure 5 shows the distribution of the dipole
orientation of water molecules both in bulk and inside pores of
different radius9. The average dipole orientation of the waters
changes very little inside the pore, as do their fluctuations, thus
supporting this assumption. In addition, the structure of the
first two hydration layers (not shown) is essentially the same in
and out of the smallest (8 Å) pore.

9 For each time step, all water molecules within a cylindrical annulus coaxial
with the +z-axis were taken, where the annulus has a 1.5 Å width, 1.5 Å
height, and a central ring 5 Å from the ion. Then the unit vector connecting the
oxygen atom of those molecules to the midpoint between the hydrogen atoms
(the unit dipole p̂(t)) was generated together with the unit position vector of
the water molecules at the centroid of the molecule r̂(t). We then took the
scalar product p̂ · r̂ per molecule, and averaged over the molecules. This set of
data was then made into a histogram of 501 bins evenly spaced from −1 to 1.

Figure 5. Distributions of the dipole orientations of water molecules
within a cylindrical annulus 5 Å away from, i.e., in the second
hydration layer of, a Ca2+ ion in bulk (black line) and inside pores of
radius 8 Å (red dashed line), 12 Å (green dash-dotted line) and 15 Å
(blue dotted line). The mean value is around 0.38 (corresponding to
the water dipole pointing 68◦ away from the ion–water vector),
except for the 8 Å pore, which increases to 0.42 (corresponding to
the water dipole pointing 65◦ away from the ion–water vector). This
signifies a moderate tightening of the water dipole around the field of
the ion as the pore size is reduced.

In order to make a connection with the ionic current (in
section 4 below), we calculate the free energy10 change for
species ν as

�Fν = �Uν − T�Sν, (8)

which includes an entropic contribution from removing a
single ion from solution and localizing it in the pore region.
This entropic contribution is �Sν = kB ln(Vpn0), where we
have assumed an ideal ionic solution and Vp is the volume of
the pore and n0 is the bulk salt concentration for all species
ν. The free energy change is plotted in figures 6 and 7 versus
the effective pore radius and it is substantial when the latter
becomes smaller than the outer hydration layer.

4. Ionic currents

We now want to relate these energy barriers to the ionic current
through the pore11. We do this by solving the Nernst–Planck
equation in one dimension. Since this model consistently
solves for both drift and diffusion contributions to ionic
transport, and yields a compact analytical expression, we use it
below with the energetic barriers found from the above model
of dehydration. Even though this analytical model does not

10 Here we deal with constant volume and temperature and thus use the
Helmholtz free energy.
11 The most detailed information regarding ion channels and physical
processes in nanopores is provided by Molecular Dynamics (MD)—but MD
simulations are not able to reach the necessary timescales required to extract
the full information on the current. Indeed, there is a hierarchy of approaches
going down from macroscopic to microscopic models: continuum models—
Poisson–Boltzmann, Poisson–Nernst–Planck; Brownian dynamics; classical
then quantum Molecular Dynamics. In practice, some combination of the
different approaches is often used, such as calculating structural/energetic
properties from MD and using them to construct simpler model systems that
can then be tested experimentally. This is the approach we have followed in
this work.

6
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Figure 6. Free energy changes, �Fν , and currents versus the effective pore radius for the monovalent ions and a field of 1 mV Å
−1

. The
black, dashed line indicates the free energy change. The remaining lines indicate the current with different standard deviations of the noise
(see text for details). The currents are for σ = p�F , with p = 0.3, 0.2, 0.1, 0 from top to bottom.

Figure 7. Free energy changes, �Fν , and currents versus the effective pore radius for the divalent ions and a field of 1 mV Å
−1

. The black,
dashed line indicates the free energy change. The remaining lines indicate the current with different standard deviations of the noise (see text
for details). The currents are for σ = p�F , with p = 0.3, 0.2, 0.1, 0 from top to bottom.

include some effects such as ion–ion interaction, we expect
that it is qualitatively accurate as discussed along with its
derivation.

The steady-state Nernst–Planck equation (see, e.g.,
[1, 63, 64]) for species ν in one dimension (assuming
variability on the pore cross-section is not important) is

Jν = −qν Dν

[
dnν(z)

dz
+ qν

kBT
nν(z)

d
ν(z)

dz

]
, (9)

where Jν is the charge flux for species ν, z ∈ (0, l) is the
axial coordinate along the pore axis of length l, nν(z) is the
ion density, Dν is the diffusion coefficient (assumed to be
position independent), and 
ν(z) is the position-dependent
potential (including both electrostatic and other interactions
that change the energy within the pore). A full solution would
require solving the density and potential within the reservoirs
and pore simultaneously (see, e.g., [65]). However, we deal
with high-resistance pores. Thus, we approximate the left (L)
and right (R) reservoirs with constant concentrations nL and
nR, and the boundary conditions at the edge of the pore are
nν(0) = nL and nν(l) = nR. This is equivalent to assuming
that as soon as an ion leaves or enters the pore, the ions in the
immediate surroundings of the pore equilibrate rapidly to their

prior distributions. Thus, multiplying by exp(qν
ν(z)/kBT )

to get

Jνeqν
ν (z)/kBT = −qν Dν

d

dz
[nν(z)e

qν
ν(z)/kB T ] (10)

and integrating yields the flux for species ν as

Jν = −qν Dν

nReqν
ν(l)/kB T − nLeqν
ν(0)/kBT∫ l
0 dz eqν
ν (z)/kBT

. (11)

We make the further simplifying assumption that the electro-
static potential drops linearly over the pore—recognizing that
in the presence of a significant potential barrier, e.g., due to
the stripping of the water molecules from the hydration layers
and in the absence of surface/fixed charges in the pore, the
ionic density in the pore is small and thus the field is due to
ionic charge layers on both sides of the pore. Results from
many works that include ion–ion interactions indeed find a
linear drop of the potential across the pore (see, e.g., [66]).
In this case, ions form a capacitor across the pore and every
so often one ion translocates through the pore. The ‘healing’
time for the loss of this ion is very short [66] and, thus, the

7
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field (potential drop) is not strongly affected12. Also, we
assume that the potential barrier due to changes in these other
interactions is constant over the pore—this ignores a region
near the pore entrance, but will not qualitatively change the
solution. Therefore, the potential for species ν can be written
as


ν(z) = z
V

l
+ �Fν

qν

(12)

when z ∈ (0, l). The boundaries are given by 
z(0) = 0 and

z(l) = V . Performing the remaining integral and for equal
reservoir densities (our case), nL = nR = n0, we get

Jν = −q2
νn0 Dν V

lkBT
e−�Fν/kB T . (13)

Relating the diffusion coefficient to the mobility via the
Einstein relation, μν = qν Dν/kBT , and putting in the constant
electric field E = V/ l, one obtains

Jν = −qνn0μν Ee−�Fν /kBT . (14)

That is, the flux of an ionic species is proportional to the
electric field and density, where the latter is suppressed by a
Boltzmann factor [41].

Now that we have an expression relating the energy barrier
to the transport properties, we can calculate the current as a
function of effective pore radius by multiplying equation (14)
by the area of the pore to get

Iν = 2π R2
p Jν

≡ Iν0e−�Fν/kB T , (15)

where we have defined a standard current Iν0 = −qνn02π R2
p

μν E that would flow in the absence of an energy barrier.
The current (15), with the mobilities and energies in table 1,
along with equations (4)–(8), is plotted in figures 6 and 7 as a
function of effective pore radius and for a field of 1 mV Å

−1
.13

The energetic barriers create sudden drops when the pore radii
are congruent with a hydration layer radius. These correspond
to the quantized steps in the conductance.

5. Effect of noise

In a real experiment, there will also be fluctuations in the
energetic barrier due to the fact that the hydration layers
are not defined by their time-averaged value (i.e., they are

12 One may worry that these charge layers—which mainly are due to excess
ionic density—invalidate the assumption of constant ionic density outside the
pore. A quick estimate of the excess density comes from the surface charge
(for two parallel plates) necessary to give a typical potential drop of 100 mV

over 100 Å. This is σ = ε0V/ l ≈ 5.5 × 10−6 e Å
−2

. This surface charge is

likely contained in a layer ∼10 Å thick, giving a density 5.5 × 10−7 e Å
−3

.

For comparison, at 1 M concentration the density is 6 × 10−4 e Å
−3

—that is,
orders of magnitude larger than the variation in density necessary to give the
electric field over the pore. However, increasing the bias or decreasing the bulk
concentration or pore length may invalidate this assumption.
13 We note that for all layers to be present, the applied field can not be stronger

than the ion’s field of ∼0.3 V Å
−1

—the magnitude of a monovalent ion’s field
within the third layer (∼7 Å from the ion)—and approximately double that for
divalent ions. In this way, the hydration layer structure will not be significantly
perturbed.

not perfect spherical shells) and also due to fluctuations of
the water structure and contents of the pore (both within
a single experiment and also structural variations between
experiments). Thus, we also examine the effect of these
fluctuations and the current noise they induce. Thus, we
calculate an averaged current for species ν as

〈Iν〉 = 〈Iν0e−�Fν/kB T 〉. (16)

We consider two specific models: Gaussian fluctuations of the
free energy with a standard deviation proportional to the free
energy barrier at a fixed pore radius and Gaussian fluctuations
in the effective pore radius. The latter was also considered
previously [41] where it was found that this type of noise
smooths out the visibility of the drops in conductance (i.e.,
the peaks in the derivative d〈Iν〉/dRp become smoother with
increasing noise). However, it was also shown that this
fluctuation induces a peak in the relative current noise that
is much less sensitive to the strength of the fluctuations—
thus giving an alternative method to detect the effect of the
hydration layers. We develop a model for this relative noise
here but do not perform the calculation of equation (16) for all
the different species.

Fluctuating energy barrier—the first model we consider
is an energy barrier that fluctuates according to a Gaussian
distribution. We neglect fluctuations that make the barrier
negative, so that the average current is

〈Iν〉 = Iν0

Nσ

∫ ∞

0
d (�F) e−�F/kBT e−(�F−�Fν )

2/2σ 2
, (17)

where σ is the standard deviation of the fluctuations and

Nσ =
∫ ∞

0
d(�F)e−(�F−�Fν )

2/2σ 2
(18)

is the normalization. The average current is thus

〈Iν〉 = Iν0 Ae−(�Fν−σ 2/2kBT )/kBT , (19)

where the factor A is

A = erfc[(−�Fν + σ 2/kBT )/
√

2σ 2]
erfc[−�Fν/

√
2σ 2] . (20)

The value of A for small σ is very close to 1. Thus, the
effect of a fluctuating energy barrier with small fluctuations is
simply to lower the energy barrier by an amount σ 2/2kBT . For
stronger fluctuations, the factor containing the complementary
error function, erfc, gives different limiting dependencies of
the average current as the fluctuation strength σ is increased.
However, large fluctuations are well outside the realm of
validity of the present model.

The relative noise in the current provides even more
information. The relative noise is

�Irel =
√〈I 2〉 − 〈I 〉2

〈I 〉 . (21)

The expectation value of the square of the current is given by

〈I 2
ν 〉 = Iν0

Nσ

∫ ∞

0
d(�F) e−�F/kBT e−(�F−�Fν )

2/2σ 2

= B I 2
ν0e−(2�Fν−2σ 2/kB T)/kB T . (22)

8
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Where the normalization is as before and the factor B is given
by

B = erfc[(−�Fν + 2σ 2/kBT )/
√

2σ 2]
erfc[−�Fν/

√
2σ 2] . (23)

Thus, the relative current noise induced by an energy barrier
with fluctuations is

�Irel =
√

eσ 2/(kBT )2 B

A2
− 1. (24)

For small fluctuations, A and B depend very weakly on σ and
are both very close to 1, giving a relative current noise

�Irel ≈ σ/kBT . (25)

As expected, the relative noise increases with the strength of
the fluctuations. For fluctuations proportional to the energy
barrier, as shown in the figures 6 and 7, the fluctuations give
rise to a monotonic increase in the relative noise. Overall, the
effect of fluctuations in the energy barrier is to decrease the
effective energy barrier and increase the current. This reduces
the magnitude of the drops in the conductance but does not
destroy their visibility. This would therefore help in observing
quantized ionic conductance. It is worth noting, however, that
this type of noise makes the step of the third hydration layer the
most pronounced. This seems an unlikely situation in actual
experiments and other types of noise need to be considered.

Fluctuating effective pore radius—in addition to the above
noise, one expects that there would be fluctuations in the
radii of the hydration layer/nanopore system. Previously, we
demonstrated that this type of noise can smear the effect of the
steps in the current [41]. As was seen, however, this noise also
gives a peak in the relative noise in the current that is much
less sensitive to the fluctuations than the average current. Here
we develop a model of this behavior by calculating the relative
noise assuming fluctuations across a single, perfect step in the
free energy (see the inset of figure 8).

The average current due to species ν when averaged over
fluctuations in the effective pore radius is

〈Iν〉 = 1

Nξ

∫ ∞

0
dR Iν0(R)e−�F(R)/kB T e−(R−Rp)

2/2ξ 2
, (26)

where ξ is the standard deviation of the radial fluctuations, Nξ

is the normalization, and the explicit R dependence has been
included in both the barrier �F and the prefactor Iν0. The
dominant factor is the exponential of the free energy barrier and
the quadratic dependence of Iν0 on R can be ignored. For small
fluctuations, the lower limit of the integral can be extended to
−∞ and Nξ → √

2πξ 2 to give

〈Iν〉 = Iν0(Rp)√
2πξ 2

∫ ∞

−∞
dR e−�F(R)/kBT e−(R−Rp)

2/2ξ 2
. (27)

Previously, we performed the averaging according to
equation (26) [41], but here we instead use equation (27) with
the approximate energy barrier �F(R) = �Fh�(Rh − R) of
a single hydration layer of radius Rh and take Īν0 to be the

Figure 8. Relative current noise induced by structural fluctuations in
the effective pore radius and/or hydration layer radius. The inset
shows the approximate change in free energy �Fh as a function of
effective pore radius in proximity to a hydration layer structure. The
noise in the pore radius induces fluctuations between the high and
low energy states. Here the third hydration layer radius of Cl− is
taken, Rh = 7.1 Å. See the text for details on �Fh. The fluctuation
strength from right to left is ξ = 0.05, 0.15, 0.25, 0.35, 0.45 Å.

current in the absence of the barrier. The average current then
becomes

〈Iν〉 = Īν0[e−�Fh/kB T (1 − C) + C], (28)

where

C = 1

2
erfc

(
Rh − Rp√

2ξ

)
. (29)

Similarly, for the square of the current one finds

〈I 2
ν 〉 = Ī 2

ν0[e−2�Fh/kB T (1 − C) + C]. (30)

Although 〈Iν〉 and 〈I 2
ν 〉 are dependent on the strength of

the fluctuations, ξ , the relative current noise has a universal
behavior in the parameter R̃ = (Rh − Rp)/

√
2ξ . That is,

all features in the relative noise would be present regardless
of the strength of the noise. However, the peak in the noise
(see below) shifts to smaller values of Rp as the noise strength
is increased, which is qualitatively in agreement with the full
averaging (equation (26)) performed in [41].

The relative noise is

�Irel =
√

(1 − e−�Fh/kB T )2C(1 − C)

e−�Fh/kBT (1 − C) + C
. (31)

For large or small Rp, the relative noise goes to zero, which
can be seen from the properties of erfc that make C → 1
and C → 0 for large and small Rp, respectively. In between
these limits, there would be nonzero relative noise, therefore
indicating that the relative noise would have a maximum. The
peak in the relative noise occurs for Rp < Rh. For a large
energy barrier �Fh, this peak occurs when C is small. Thus,
we can approximate the relative noise as

�Irel ≈
√

C

e−�Fh/kB T + C
. (32)

9



J. Phys.: Condens. Matter 22 (2010) 454126 M Zwolak et al

Figure 9. Free energy changes, �F , and currents versus the effective pore radius for the monovalent ions and several values of εp

(εp = 7, 5, 3, 1 from bottom to top) and for a field of 1 mV Å
−1

. The dashed lines indicate the free energy change. The solid lines indicate the
current (see text for details). The currents are for εp = 7, 5, 3, 1, from top to bottom.

This gives a peak in the noise when C = e−�Fh/kB T with a
value

�I �
rel ≈ 1

2 e�Fh/2kBT . (33)

The peak is exponentially large in the energy barrier. However,
the model with the electrostatic energy given by equation (7)
does not have an ideal step in the free energy (see, e.g.,
figures 6 and 7). From previous work [41], we can identify
the peaks, R�

p, and use �Fh ≈ �Fν(R�
p). This is done in

figure 8 for Cl−. The model agrees quantitatively with the full
averaging performed in [41]. The only feature missing is the
additional background noise away from the step due to the non-
uniform energy barrier on both sides of the step.

Thus, from this ‘two-channel’ model of noise we have
found two generic features: (i) a peak develops in the relative
current noise that is exponentially high with the hydration
energy barrier, and (ii) it is present regardless of the noise
strength, although its location moves to smaller values of the
pore radius with increasing noise (likewise, the peak becomes
wider). These features are in agreement with what is found
from performing the full averaging from equation (26) using
the surface area model of the energy barrier [41]. In the full
model the fluctuations will eventually smooth out the peak in
the relative current noise. The latter, however, is still much
less sensitive than the average current drops, making the peak
in the relative current noise versus Rp a robust indicator of
dehydration.

Barrier reduction—in addition to the above fluctuations,
there are factors that reduce the energetic barrier, such as the
presence of some surface charge and/or dielectric screening in
the pore. In equation (4) we included a dielectric constant εp

to represent a reduction in the hydration layer energy barrier
from these sources. We expect, however, that the introduction
of this constant overestimates the barrier reduction. It amounts
to replacing the water molecules screening the ion with a
material of lower-dielectric constant but in the exact geometry
of the water molecules. This is very unlikely since the pore
screening comes from the fixed surface of the pore and thus
in a different functional form. Nevertheless, it is instructive to
see how the drops in the current are reduced by this effective

lowering of the energy barrier. Figures 9 and 10 show the
energy barrier and current for several values of this effective
dielectric constant. We find that even for fairly large εp (∼7),
the barriers are large enough to give a noticeable drop in the
current.

Bulk concentration—we also mention the effect of
changing the concentration of ions in bulk. We have
assumed that the hydration layers are well formed away
from the pore. Large ionic concentration in bulk, however,
would affect the formation of the hydration layers. For a
completely disassociated 1:1 salt, the ion–ion distance goes
as ∼9.4/n1/3

0 Å where the bulk concentration, n0, is given
in mols/l. Thus, the inter-ion distance is ∼9.4 Å for a 1 M
solution, which is almost large enough to house both the first
and second hydration layers. However, concentrations lower
than 1 M are preferable.

Some remarks—we have discussed many of the factors
that will affect the detection of quantized ionic conductance.
The most ideal experiment would be one with pores of well-
controlled diameter and with smooth surfaces. Likewise, a
small (or no) amount of surface charge and a low-dielectric
constant of the pore will make the effect more pronounced
(and the ability to gate a pore, e.g., made of a nanotube,
would help even more in understanding the energetics of
transport). Not having these factors under control greatly
affects the transport properties of the ions [67]. Therefore,
pores made of, for instance, semiconducting nanotubes may be
ideal. Indeed, pores made of these materials have been recently
demonstrated [68]. However, rough surfaces that are present
in pores made of, e.g., silicon nitride, should still allow for
quantized conductance to be observed, so long as the variation
of the effective radius of the pore is not too strong. The noise
in the effective radius of the pore was investigated previously
in [41], where we found that only beyond variation in the
radius of 0.2–0.3 Å will the effect be washed out. However,
even beyond this variation magnitude, the relative current noise
signifies the presence of steps in the energy barrier, thus giving
a more robust indicator of the hydration layers’ effect on
transport.

10
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Figure 10. Free energy changes, �F , and currents versus the effective pore radius for the divalent ions and several values of εp

(εp = 7, 5, 3, 1 from bottom to top) and for a field of 1 mV Å
−1

. The dashed lines indicate the free energy change. The solid lines indicate the
current (see text for details). The currents are for εp = 7, 5, 3, 1, from top to bottom.

6. Conclusions

Ionic transport in nanopores is a fascinating subject with
a long history and impact in many areas of science and
technology. Recent work on developing aqueous-based
nanotechnology and understanding biological ion channels
requires a firm understanding of how water and ions behave
in confined geometries and under non-equilibrium conditions
due to applied fields. For example, the quest for ultra-fast,
single-molecule DNA sequencing has yielded a number of
proposals based on nanopores [3]. Among them, transverse
electronic transport [4, 5] (whose theoretical basis includes
the investigation of atomistic fluctuations [4–7] and electronic
noise in liquid environments [8]) and ionic blockade [12–19]
have yielded promising recent experiments (references [20, 21]
and [22, 23], respectively). In all these cases, both water
and ions are present and will have a significant impact on the
signals and noise observed.

In this work, we have analyzed in detail the recent
prediction of quantized ionic conductance [41] and examined
how different aspects of the ion-nanopore system influence the
detection of this phenomenon. Namely, we have shown that
the ion type affects very little the radii at which the conduction
should drop. High valency ions, however, should give even
more pronounced drops in the current and thus may help in
detecting this effect. Further, the presence of the hydration
layers gives a peak in the relative noise at pore radii congruent
with a layer radius. This relative noise is much less sensitive to
fluctuations than the average current, and provides a promising
approach to detect the effect of hydration.

Overall, quantized ionic conductance yields experimental
predictions that will shed light on the contribution of
dehydration to ion transport and we hope this work will
motivate experiments in this direction.
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