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Quantum Darwinism provides an information-theoretic framework for the emergence of the objective, classical
world from the quantum substrate. The key to this emergence is the proliferation of redundant information
throughout the environment where observers can then intercept it. We study this process for a purely decohering
interaction when the environment, E , is in a nonideal (e.g., mixed) initial state. In the case of good decoherence,
that is, after the pointer states have been unambiguously selected, the mutual information between the system, S,
and an environment fragment,F , is given solely byF’s entropy increase. This demonstrates that the environment’s
capacity for recording the state ofS is directly related to its ability to increase its entropy. Environments that remain
nearly invariant under the interaction with S, either because they have a large initial entropy or a misaligned initial
state, therefore have a diminished ability to acquire information. To elucidate the concept of good decoherence, we
show that, when decoherence is not complete, the deviation of the mutual information from F’s entropy change is
quantified by the quantum discord, i.e., the excess mutual information between S and F is information regarding
the initial coherence between pointer states of S. In addition to illustrating these results with a single-qubit system
interacting with a multiqubit environment, we find scaling relations for the redundancy of information acquired
by the environment that display a universal behavior independent of the initial state of S. Our results demonstrate
that Quantum Darwinism is robust with respect to nonideal initial states of the environment: the environment
almost always acquires redundant information about the system but its rate of acquisition can be reduced.
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I. INTRODUCTION

Quantum mechanics was initially devised as a microscopic
theory of atoms. However, macroscopic objects are made
of quantum components. Thus quantum mechanics should
describe our classical world as well. Yet, we do not observe
“strange” quantum states in objects directly accessible to our
senses. This has been a concern since the inception of quantum
mechanics, even as its predictions continue to be verified. For
many years, the strategy was (following Bohr) to bypass this
difficulty by postulating a division between the classical and
quantum worlds [1–4].

The theory of decoherence is now the standard starting point
for addressing these questions [4–7]. A system coupled to an
environment gets decohered into its pointer states [5,8] that
survive the interaction with the environment. This durability is
one aspect of classicality. Amplification was also conjectured
to play a role [9,10]. Only very recently, however, has this
role been made precise by the concept of redundancy in
Quantum Darwinism, an information-theoretic framework for
understanding the quantum-classical transition [11–17] (see
Ref. [18] for a review). Within this framework, the objective,
classical reality of the pointer states arises from the redun-
dant dissemination of information about them throughout
the environment. Many observers can then independently
determine and reach consensus about the state of the system
by intercepting separate fragments of the environment. This
explains the “objective reality” of pointer states. They are
not perturbed by measurements on the environment and, thus,
as classical states should, they are immune to our “finding
out” what they are. This process of discovery is especially
easy when fragments of the environment do not interact
with each other, e.g., such as photons. To make the analogy
to Darwinism: certain states (the pointer states) “survive”
the interaction with the environment and “procreate” by
imprinting copies of themselves on the environment.

Quantum Darwinism is an extension of the decoherence
paradigm, where now not only the system but also the environ-
ment is of interest. It acts as a witness to the state of the system
and as a communication channel, transmitting information to
observers. Previous studies on Quantum Darwinism focused
on models where the system and environment are initially
pure [11,12,16]. It is essential, however, to understand how
different initial states influence the ability of the environment
to effectively communicate information. A recent study has
begun to examine the effect of starting with a “hazy”
environment, i.e., one with some initial entropy. It was found
that fairly hazy environments behave as noisy communication
channels [17]. Here we go further by examining more generally
how the environment’s capacity to transmit information is
determined by its initial state and also distinguish between
the transmission of quantum and classical information about
the system (see also a recent work by Paz and Roncaglia
that examines quantum and classical information in quantum
Brownian motion [16]).

We first outline, in Sec. II, the basic concepts behind
Quantum Darwinism, including the mutual information that
is used to compute the redundancy of information about the
system in the environment. In Sec. III, we prove, in the typical
case of good decoherence, that the mutual information between
the system and a fragment of the environment is given by
the fragment’s entropy increase when the system interacts
independently with many components of the environment.
In Sec. IV, we elucidate the concept of good decoherence
by showing that, when decoherence is not complete, the
deviation of the mutual information from the fragment’s
entropy change is quantified by the quantum discord [19–21].
The excess mutual information between the system and the
environment fragment is information about the initial coherent
superposition of pointer states of the system.

After these general results, in Sec. V, we introduce a
symmetric environment model composed of qubits that we
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use to illustrate the analytic results of Secs. III and IV.
We demonstrate how classical information proliferates into
the environment. Also, we investigate the dependence of
the redundancy of classical information storage to hazy
(i.e., mixed) and misaligned (e.g., close to an eigenstate
of the interaction Hamiltonian) initial environment states.
Starting with these nonideal initial conditions diminishes the
environment’s capacity to acquire and transmit information.
For example, in a fairly hazy environment, the redundancy
behaves as 1 − h as h → 1, where the haziness, h, is the
initial entropy of an environment qubit. That is, it behaves as a
noisy communication channel. For both hazy and misaligned
environments we develop scaling relations for the behavior of
the redundancy. These relations show a universal behavior of
the redundancy that is independent of the initial state of the
system. In Appendix A, we solve for the mutual information
and discord for several parameter regimes of the symmetric
environment model. In Appendix B, we outline a numerically
exact procedure for computing the entropies (that show up in
the mutual information) for the model. In Appendix C, we
derive an approximate expression for the mutual information
that elucidates the behavior of the redundancy.

II. INFORMATION AND REDUNDANCY

Quantum Darwinism recognizes and investigates the ability
of the environment to redundantly record information about a
“system of interest.” As before [11,12,16,17], we focus on the
mutual information

I (S : F) = HS (t) + HF (t) − HSF (t) (1)

between the system, S, and a fragment F of the environment
E . Above, HS (t) and HF (t) are the von Neumann entropies at
time t of S and F , respectively, and HSF (t) is the joint entropy
S and F . The mutual information between S and F quantifies
the correlations between the two. When S and F are initially
uncorrelated, I (S : F) gives the total information F gained
about the state of S.

We want to investigate how much information F acquires
aboutS when they interact and how redundant this information
is. We do not insist on acquiring all of the missing classical
information, HS , about the system: The information deficit δ is
the fraction of HS we are prepared to forgo. For a given δ, the
redundancy of information about S is the maximum number of
disjoint fragments Rδ that have a mutual information greater
than (1 − δ)HS with S. In terms of a fragment size, the
redundancy is

Rδ =
�E
�Fδ

= 1

fδ

, (2)

where the environment has �E components, �Fδ is the typical
size of an environment fragment needed to acquire a mutual
information no less than (1 − δ)HS , and fδ = �E/�Fδ is the
corresponding fraction of the environment. In the symmetric
environment considered in Sec. V all possible partitions of
the environment into fragments of size �Fδ have identical
mutual information and, thus, �Fδ is the size of the environment
fragment needed to give I (S : F) � (1 − δ)HS .

The mutual information given by Eq. (1) and redundancy
given by Eq. (2) set the stage for studying how information is

FIG. 1. (Color online) The behavior of the mutual information,
I (S : F), between the system, S, and a fragment, F , of a symmetric
environment, E , as a function of the fraction of the environment
intercepted, f = �F/�E . The black solid line is for an initially pure E
and the black dashed line is for an initially hazy E . Here, �F and �E
are the number of components in the fragment and the environment,
respectively. The information HS sets the limit of classical infor-
mation about S that E can acquire, resulting in a plateau region at
HS (the classical plateau) that signifies the redundant proliferation
of classical information into the environment. We define a fragment
size, �Fδ , that gives the value of the mutual information (1 − δ)HS ,
i.e., to within the information deficit, δ, of the classical plateau. The
redundancy, Rδ , at this information deficit is then given by Eq. (2).
The initial haziness of E reduces the redundancy. The data for this
figure is from an actual simulation like those performed in Sec. V.

acquired by the environment. Previous studies have shown the
formation of a classical plateau with I (S : F) � HS . Figure 1
shows an example of this type of behavior and clarifies the
quantities involved in defining the redundancy.

III. INFORMATION CAPACITY OF A PURELY
DECOHERING ENVIRONMENT

In this section and the following section, we prove two
general results about how purely decohering environments
store and transmit information. We consider a general model
of pure decoherence given by the Hamiltonian

HSE =
�E∑

k=1

�Sϒk, (3)

where �S is a Hermitian operator on S and ϒk is a Hermitian
operator on the kth environment component.1 This Hamilto-
nian does not generate transitions between the pointers states,
given by the eigenstates of �S , of the system. In this model
of many environment components interacting independently

1We assume that �S and the ϒk do not have any degenerate
eigenvalues.
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with S, we consider a product initial state

ρ(0) = ρS (0) ⊗
⎡
⎣ �E⊗

k=1

ρk(0)

⎤
⎦ . (4)

To compute the mutual information, we calculate the entropies
of ρS (t), ρF (t), and ρSF (t). Here, however, we want to
first show how the mutual information can be written more
transparently by replacing the entropy of ρSF (t) with the sum
of two entropies: ρS decohered only by the remainder of the
environment, E/F , and ρF (0). That is, the state

ρSF (t) = trE/F [e−ıHSE t ρ(0)eıHSE t ]

= e−ıHSF t {trE/F [e−ıHSE/F t ρSE/F (0)eıHSE/F t ] ⊗ ρF (0)}eıHSF t , (5)

where HSF = ∑
k∈F �Sϒk and HSE/F = ∑

k∈E/F �Sϒk , has
the same entropy as

ρSd(E/F)(t) ⊗ ρF (0). (6)

Here Sd(E/F) is the system decohered solely by E/F (i.e.,
evolved only by the Hamiltonian HSE/F ) and ρF (0) = ⊗k∈F
ρk(0) is the initial state of F . Hence the entropy of ρSF (t) is

HSF (t) = HSd(E/F)(t) + HF (0). (7)

Therefore, the mutual information is

I (S : F) = [HF (t) − HF (0)] + [HSdE (t) − HSd(E/F)(t)],

(8)

where HSdE (t) = HS (t), i.e., HSdE (t) is S decohered by the
whole environment E .2 The first term in brackets in Eq. (8) is
the entropy increase of the fragment F due to the interaction
with S. The second term is the difference of the entropy of S
interacting with all of E and the entropy of S interacting solely
with E/F . When both E and E/F are sufficient to decohere
S at a given time, the second term, HSdE (t) − HSd(E/F)(t),
will be nearly zero. This will happen when E has decohered
S and the size of F is small compared to the size of E . This
approximation of good decoherence is accurate at all but very
short times (i.e., less than the decoherence time) or for very
large fragments (i.e., when the size of E/F is too small to
decohere S). Thus, in the typical case of good decoherence,
the mutual information will be approximately

I (S : F) ≈ HF (t) − HF (0). (9)

This reduces to just I (S : F) ≈ HF (t) for initially pure
environments [13]. The mutual information rewritten as in
Eq. (9) is a universal relationship for any “decoherence
only” model where S interacts with independent environment
components and where good decoherence has taken place.

From Eq. (9), it is clear that when F starts in a state that
commutes with HSF , i.e., diagonal in the basis of the interac-
tion operator that appears in HSF (either because it is mixed in
that basis or starts in one of the eigenstates of that basis), it has
no capacity to increase its entropy and therefore no capacity to
store classical information about S. In other words, states
of E that remain invariant under the Hamiltonian dynamics

2For a pure initial system and environment, I (S : F) = HSdF (t) +
[HSdE (t) − HSd(E/F)(t)], where the entropy of F is equivalent to the
entropy of S when it only interacts with F . There is a generalization
to mixed initial S and pure initial E , which we discuss later in the
article.

generated by Eq. (3) do not redundantly store information
about S. The extent to which the environment’s initial
state coincides with such states degrades its transmission
capabilities.

IV. DISCORD AND DECOHERENCE

In this section, we show that before good decoherence has
been reached (or for sufficiently large F), the second term in
Eq. (8) contributes to the mutual information. This second term
is the quantum discord [19–21] with respect to the pointer basis
of S. The quantum discord with respect to any basis, {�S},
is defined as the difference between two classically equivalent
expressions for the mutual information [21]:

δ(S : F){�S } = I (S : F) − J (S : F){�S } (10)

= HS (t) − HSF (t) + HF |{�S }.(t). (11)

Above,

J (S : F){�S } = HF (t) − HF |{�S }.(t) (12)

is the other classical expression for the mutual information in
terms of the conditional information (i.e., the entropy decrease
of F given a measurement of �S on S).3

The second term in brackets in Eq. (8) is the quantum
discord with respect to the pointer basis of S, i.e., the
eigenbasis of �S from the Hamiltonian in Eq. (3).4 To show
this, we first rewrite the quantum discord using Eq. (7) as

δ(S : F){�S } = HSdE (t) − HSd(E/F)(t)

−HF (0) + HF |{�S }.(t). (13)

The last term, however, simplifies to

HF |{�S }.(t) =
∑

j

pjHF |�S
j .(t) (14)

=
∑

j

pjH (UjρF (0)U†
j ) (15)

= HF (0), (16)

3Note that both the information deficit and the discord are denoted
by the same symbol, δ. It should be clear from context to which
quantity δ refers. However, to help alleviate confusion, we use a bold
δ for the discord.

4We are not minimizing the discord with respect to the measurement
on S as we want to differentiate between the information the
environment acquires about the pointer basis and the complementary
information that flows into the environment.
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where pj is the occupation of the j th eigenstate of �S and
Uj is the evolution operator projected onto that state. Thus,
in this case of pure decoherence by independent environment
components, the quantum discord is

δ(S : F){�S } = HSdE (t) − HSd(E/F)(t). (17)

The discord represents information complementary to the
information about the pointer states of S that the environment
fragment has acquired. To see this, note that the discord in
Eq. (17) involves only the entropy of S evolved in the presence
of the full environment E and the environment without the
fragment E/F . Under a pure decoherence Hamiltonian, any
difference between these two is due to off-diagonal elements
in the system’s initial density matrix. That is, the discord
yields information about the initial coherence between pointer
states of S. This is information about the complementary
observables to �S , i.e., operators that do not commute
with �S .

In pure decoherence models, the same complementary
information flows into the environment regardless of whether
E is in an initially pure or mixed state. This comes out of
Eq. (17) after recognizing that the environment decoheres
the system identically regardless of its initial entropy when
its alignment is held fixed. However, even though the initial
entropy of the environment does not effect its ability to receive
complementary information, its alignment with the states that
commute with HSE does effect this ability. These issues will be
discussed along with the following concrete, solvable example
in order to elucidate the ideas shown here.

V. EXAMPLE: QUBIT INTERACTING WITH A
SYMMETRIC ENVIRONMENT

We now study a solvable example of a qubit system
interacting with a symmetric qubit environment often used
as a model of decoherence [8,10]. The Hamiltonian is

HSE = 1

2

�E∑
k=1

σ z
Sσ z

k . (18)

It causes pure decoherence of the system’s state into its pointer
basis, the eigenstates of σ z

S . In this basis, the system is initially
described by

ρS (0) =
(

s00 s01

s10 s11

)
. (19)

We take the initial state of the environment to be the product
state, Eq. (4), with ρk(0) = ρr for all k. In the σ z basis, the
density matrix of each component is

ρr =
(

r00 r01

r10 r11

)
. (20)

We examine how two quantities that characterize this state, its
haziness and misalignment, affect its ability to accept informa-
tion. Figure 2 shows a representation of these quantities using
the Bloch sphere. The haziness is the preexisting entropy of
an environment qubit:

h ≡ H (ρr ). (21)

(a) (b)z

ρr y
x

z

y
x

ρr

FIG. 2. (Color online) Bloch sphere representation of (a) haziness
and (b) misalignment. Pure states in the x-y plane (highlighted)
have the maximum capacity to accept information about the system’s
pointer states. Haziness of an environment qubit contracts its Bloch
sphere, reducing the qubits ability to increase its entropy and therefore
decreasing its capacity to store information. Misalignment rotates the
state out of the x-y plane, which also decreases the qubits capacity to
store information. For both haziness and misalignment, the decrease
in capacity is due to a reduction in the environment qubits’ ability
to branch into two orthogonal states correlated with the two pointer
states of the system.

Misalignment of a component of the environment is tilting
it away from the states that have the most capacity to accept
information. Thus, we can similarly define the misalignment
of the environment by the maximum entropy it can obtain
under a pure decoherence Hamiltonian,

hm ≡ H (r00), (22)

where H (x) ≡ −x log2 x − (1 − x) log2(1 − x) is the binary
entropy. This parameter indicates the maximum amount of in-
formation [according to Eq. (9)] that an environment qubit can
ever obtain after good decoherence has taken place under the
evolution of Eq. (18). The maximum capacity states are qubits
that start in the x-y plane of the Bloch sphere. The minimum
capacity states are σ z eigenstates, which will not even decohere
S. When we calculate the redundancy, however, we find it more
convenient to parametrize the misalignment of ρr as

σ = r00 − r11 (23)

instead of using Eq. (22). When an environment qubit is in
a σ z eigenstate, |σ | = 1, it will remain untouched by HSE of
Eq. (18). The details of the calculations can be found in the
appendices. In the following we highlight the main results.

A. Mutual information

In Appendix A and using Eq. (8), we show that the mutual
information takes on the form

I (S : F) = [HF (t) − HF (0)]

+ [H (κE (t)) − H (κE/F (t))], (24)

where

κA(t) = 1
2 (1 +

√
(s11 − s00)2 + 4|s01|2|�A(t)|2) (25)

and �A(t) is the contribution to decoherence of S due to the
subset A of the environment. Figures 3(a) and 3(b) and 4(a)
and 4(b) show the behavior of the mutual information versus
time for several different cases involving pure and mixed S
and pure, mixed, and misaligned E .
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FIG. 3. (Color online) (a and b) Mutual information, I (S : F), and (c and d) quantum discord, δ(S : F){σz
S }, versus the fragment size, �F ,

and time, t , with s00 = 1/2, r00 = 1/2, and �E = 200. (a and b) The mutual information for HS (0) = 0 and HS (0) = 0.8, respectively. Initially
E and S are uncorrelated, but as time develops, E acquires information about S. After an initial transient region, signified by a nonzero quantum
discord in (c and d), a plateau develops in the mutual information. A sudden increase in the von Neumann mutual information occurs for large
�F ∼ �E because complementary information about S is accessible via global measurements. For a system initially in a superposition, this jump
is large and so is the discord in the transient region. The jump is reduced by any existing decoherence of S when it is placed in contact with
E . However, the level and size of the classical plateau is identical regardless of the initial entropy of S. (c and d) The quantum discord with
respect to the eigenstates of �S = σ z

S for HS (0) = 0 and HS (0) = 0.8, respectively. The environment, E , can be pure or mixed, and, in fact, the
discord is equivalent to the mutual information between S and F for a diagonal initial state ρr . There is a transient region, just after S and E
have come into contact, where nonzero discord exists. Its duration depends on the size of the environment. Except for this region, the discord
is negligibly small since both E and E/F are sufficient to decohere S. The discord is reduced by the preexisting entropy of S before coming
in contact with E , as shown in (b). This is because the discord signifies complementary information about S, i.e., information about the initial
coherence between pointer states of S.

For pure S and pure E , the mutual information is plotted
in Fig. 3(a). Initially S and E are uncorrelated and therefore
the environment contains no information about the system.
In time, however, correlations begin to encode information
about both the pointer states of S and their superpositions.
The latter is reflected by the nonzero quantum discord in
Figs. 3(c) and 3(d). After good decoherence has taken place,
a plateau develops in the mutual information as a function of
�F . This classical plateau signifies classical (i.e., redundant
and therefore objective) information that has proliferated
throughout the environment.

For mixedS and pure E , the mutual information is plotted in
Fig. 3(b) for HS (0) = 0.8. As with a pure S, the environment
develops correlations with the system. In particular, it obtains
information about the pointer states of the system. Thus,
as before, the classical plateau forms at the same level,

HS , which is determined only by diagonal elements of the
system’s initial density matrix in its pointer basis. However,
the available complementary information about S, as signified
by the discord with F , is reduced due to the initial entropy
of S.

Environments, however, will generally contain some preex-
isting entropy, e.g., due to a finite temperature or interactions
with other degrees of freedom not directly in contact with
S (for example, photons emitted from the sun are initially
partially mixed). In Fig. 4, the mutual information is plotted
for a hazy environment, h ≈ 0.8, and a hazy, misaligned
environment with σ = 0.8 and h/hm ≈ 0.8.5 Although the

5For both the initially hazy E and the initially hazy, misaligned E ,
the initial density matrix ρr in Eq. (20) is constructed first by creating
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FIG. 4. (Color online) Mutual information, I (S : F), versus
the fragment size, �F , and time, t , for an initially pure S and
(a) an initially hazy E with r00 = 1/2 and h ≈ 0.8, and (b) an
initially hazy and misaligned E with σ = 0.8 and h/hm ≈ 0.8. The
other parameters are s00 = 1/2 and �E = 200. As with Fig. 3, E
initially contains no information about S, but correlations develop,
transmitting information about S throughout E , then going over to a
classical regime signified by the formation of the classical plateau.
Misalignment and haziness both reduce the information a given
fragmentF gains aboutS. However, since the classical plateau forms,
the environment still maintains the ability to redundantly encode
classical information about S.

classical plateau is slower to develop as a function of �F , it
still forms at the same level, HS , as for an initially pure E .
This is significant, as it shows that the pointer states of S can
still be completely determined from a fragment of E even when
the environment is initially in a nonideal state.

B. Discord

The second term in brackets in Eq. (24) gives the quantum
discord with respect to the eigenstates of σ z

S :

δ(S : F){σ z
S } = H (κE (t)) − H (κE/F (t)), (26)

a pure state (with σ = 0 and σ = 0.8, respectively) and then creating
the initial entropy by decohering the off-diagonal matrix elements by
a factor 1/2. This creates an initial ρr with h ≈ 0.8 and h/hm ≈ 0.8,
respectively, rather than exactly 0.8.

which is plotted in Figs. 3(c) and 3(d) for two initial conditions.
This is the deviation from the good decoherence expression,
Eq. (9), for the mutual information. This deviation term
will be nearly zero whenever κE (t) ≈ κE/F (t), which occurs
when |�E (t) − �E/F (t)| ≈ 0 — that is, whenever both E
and E/F are sufficient to decohere S.6 In this symmetric
model, good decoherence means that both �E and �E − �F
are sufficiently large or that �k(t), the contribution of a
single E spin to decoherence [see Eq. (A4)], is sufficiently
small, so the decoherence factors �E (t) and �E/F (t) are
both small.

As discussed above, the discord represents information the
environment fragment has acquired regarding complementary
observables of S. In this qubit system with a σ z

S pointer basis,
the complementary observables are σx

S and σ
y

S . The initial
expectation value of these observables are 〈σx

S 〉0 = 2Res01

and 〈σy

S 〉0 = −2Ims01, respectively. Since the discord is the
difference of two terms, which differ only by the factor
multiplying s01, it contains information regarding the initial
expectation value of σx

S and σ
y

S , whereas the first term in
brackets in Eq. (24) does not [as can be seen from the form
of ρF (t) in Eq. (A8)]. This is more obvious close to good
decoherence when the discord becomes

δ(S : F){σ z
S } ≈ (〈

σx
S
〉2
0 + 〈

σ
y

S
〉2
0

) × (|�E/F (t)|2 − |�E (t)|2)

× log2(s00/s11)

4(s11 − s00)
. (27)

That is, the quantum discord is directly proportional to the
expectation value of the observables that do not commute with
the pointer observable σ z

S .
Equation (26) together with Eq. (25) also show that

whether the environment is pure or hazy, it acquires identical
complementary information about S. This is evident by the
dependence of the quantum discord only on how E and E/F
decohere S. The latter relies only on the initial alignment of
the environment components with the eigenstates of σ z but not
on how hazy they are.

C. Redundancy

In the previous two subsections we examined the behavior
of the mutual information and quantum discord in various
parameter regimes. We now examine the behavior of the
redundancy for different initial states of the system and
environment.

1. Hazy E
As discussed above, an initially hazy E has a lower capacity

to store information [17]. In Figs. 5(a) and 5(b), we plot the
mutual information versus �F and h at t = π/2 and t = π/4.
Even though the initial haziness diminishes the capacity of the
environment to acquire and transmit information, we see that
the classical plateau still forms and at the same level (HS ), but
takes a longer time to develop and flattens out only for larger

6The discord will also be zero when the environment and system
are in a product state, as they are at t = 0. In this case, Eq. (9) holds
but only because the system and environment are uncorrelated.
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FIG. 5. (Color online) (a and b) Mutual information, I (S : F), versus the fragment size, �F , and haziness, h, of the environment
qubits, and (c and d) the redundancy (limiting redundancy), Rδ (R̄), versus h. The system is initially pure, and s00 = 1/2, r00 = 1/2,
and �E = 200. (a and b) Mutual information at t = π/2 and t = π/4, respectively. The classical plateau forms in all but the haziest of
conditions where the environment is ab initio in a perfect mixture. (c) The redundancy, Rδ , at t = π/2 (and t = π/4 in the inset). The
black line is the exact data. The redundancy initially drops fairly rapidly because of the symmetry of the model but then goes over to
a region where it behaves as 1 − h (shown as the red, dashed line). The blue, dotted curve shows the scaling behavior from Eq. (29),
which already reasonably approximates the exact behavior even though �Fδ is small. (d) The limiting redundancy, R̄, at t = π/2. There
are four different initial states of S: s00 = 1/2 (blue circles), s00 = 1/8 (red crosses), s00 = 1/64 (green squares), and s00 = 1/4096
(magenta triangles). Equation (30) with Rδ from Eq. (29), is plotted (black line) with the exact data for the different initial states
of S.

�F . Moreover, the final jump of the mutual information when
�F ≈ �E , which signifies complete quantum correlation of E
with S, is the same regardless of whether the environment is
initially pure or hazy. Somewhat surprisingly, it occurs even
for a completely hazy environment (h = 1) where the classical
plateau is missing. Thus the complementary information about
S remains the same regardless of the haziness, h, at fixed
misalignment.

In Fig. 5(c), we plot the redundancy for t = π/2 and
t = π/4. This shows explicitly that although the capacity
of the environment is reduced, the redundancy is still large.
There is an initial, more rapid drop in the redundancy as
the state becomes a little hazy, but this crosses over to a
linear region where redundancy behaves as 1 − h, i.e., like
a noisy communication channel [22]. The initial, more rapid
drop at t = π/2 is due to the symmetry of the environment:
when h = 0 each qubit has complete classical correlation
with S.

In Appendix C, we derive an approximate expression for
the mutual information at r00 = 1/2 and t = π/2 for fairly

hazy E and large �F :

I (S : F) ≈ HS − (2
√

λ−λ+)
�F√

π�F/2

2π
√

s00s11

(ln 2)
(

ln λ+
λ−

) . (28)

This asymptotic expression allows us to estimate the redun-
dancy when the information deficit, δ, is small as

Rδ ≈
�E ln(2

√
λ−λ+)

ln δ
. (29)

This expression is plotted in Fig. 5(c) along with the exact data
(and also the linear approximation) for t = π/2. Even when
�Fδ is small (i.e., for small information deficits and haziness),
this approximation captures the behavior of the redundancy.7

As δ → 0, the redundancy for an arbitrary initial system state

7We emphasize, however, that the approximation to the mutual
information, Eq. (28), from which it is derived, does not work well at
small �F , as can be seen in Fig. 9.
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FIG. 6. (Color online) (a and b) Mutual information, I (S : F), versus the fragment size, �F , and misalignment, σ , of the environment
qubits, and (c and d) the redundancy, Rδ , versus σ . The system and environment are initially pure, and s00 = 1/2 and �E = 200. (a and b) The
mutual information at t = π/2 and t = π/4, respectively. The classical plateau is formed and is quite large for all but very misaligned states
(σ near 1). (c and d) The redundancy versus the misalignment at t = π/2 and t = π/4, respectively. The black lines are the exact data obtained
numerically and the blue dotted line is the scaling given by Eq. (33), which already fits quite well with the numerical results. The red dashed
line is the redundancy given by Rδ ∝ ln |�k(t)|2 with the constant of proportionality found by retaining all the factors when using Eq. (30).
The inserts are the limiting redundancy, R̄, given by Eq. (27) (using both the exact data shown as squares and data from Eq. (33) shown as a
dashed blue line), which demonstrates that the scaling result is obtained when discrete effects are not present (i.e., in the limit of vanishing
information deficit, δ → 0).

collapse onto this same universal curve. Thus, we define a
limiting redundancy

R̄ = lim
δ→0

−Rδ ln δ

�E . (30)

This expression, with Rδ from Eq. (29), is shown in Fig. 5(d)
along with R̄ from the exact data for four different initial states
of S: s00 = 1/2, s00 = 1/8, s00 = 1/64, and s00 = 1/4096.
From the figure, we see that when discrete effects disappear,
the limiting redundancy describes very well the behavior of the
redundancy of information proliferated into the environment
and that this behavior is universal—it does not depend on the
system’s initial state.

2. Misaligned E
As discussed above, a misaligned environment qubit is one

that has a larger overlap with an eigenstate of the interaction
Hamiltonian and thus one with a decreased capacity for
information. With the interaction Hamiltonian containing σ z

operators on the environment qubits, the misalignment is the
bias in the initial state, Eq. (20), σ = r00 − r11. In Figs. 6(a)

and 6(b), we show the mutual information versus �F and σ at
t = π/2 and t = π/4. The classical plateau is formed for all
but the most misaligned states and at the same level, HS .
Thus, just as with haziness, misaligned environments also
redundantly encode information (i.e., classical information)
about S. The redundancy is plotted in Figs. 6(c) and 6(d) for
these two times. We can see that, for the not too small infor-
mation deficit δ = 0.1, Rδ is initially quite insensitive to the
misalignment.

We can get quantitative understanding of how the redun-
dancy behaves if we take δ to be small. In this case, a large
�Fδ is necessary to achieve the plateau value of the mutual
information within the information deficit δ and we thus can
take all the corresponding decoherence factors �F (t), �E/F (t),
and �E (t) to be very small and expand the entropies in the
mutual information [see Eq. (A13)]. For pure E , as long as
�E � �Fδ , this gives the mutual information

I (S : F) ≈ HS − s00s11 ln s00
s11

(s00 − s11) ln 2
|�F (t)|2. (31)
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FIG. 7. (Color online) (a and b) Mutual information, I (S : F), versus the fragment size, �F , and normalized haziness, h/hm, of the
environment qubits, and (c) the redundancy, Rδ , versus h/hm. The system is initially pure, and t = π/2, s00 = 1/2, and �E = 200. (a and b)
Mutual information for the misalignments σ = 0.4 (hm ≈ 0.88) and σ = 0.8 (hm ≈ 0.47), respectively. The plateau region still forms at the
same level, HS , essentially regardless of how hazy or misaligned the environment is initially. (c) Redundancy for σ = 0.4 (the inset is for
σ = 0.8). The black line is the exact data and the red dashed line is the linear approximation. As we see, there is still a linear region of the
redundancy for fairly hazy environments.

Thus, we have

�Fδ ≈ ln δ

ln |�k(t)|2 , (32)

where |�k(t)|2 = cos2 t + σ 2 sin2 t . Therefore, the redun-
dancy for small information deficit will scale as

Rδ ≈
�E ln |�k(t)|2

ln δ
. (33)

This is plotted in Figs. 6(c) and 6(d) along with the exact
redundancy. Note that, even for the information deficit δ = 0.1,
the approximate expression is quite good modulo discrete
effects. The insets in Figs. 6(c) and 6(d) show that as
the information deficit is taken to zero, δ → 0, the scaling
predicted for the limiting redundancy, R̄ from Eq. (30) with
Rδ given by Eq. (33), describes the redundancy behavior
of misaligned states very well. At t = π/2, the redundancy
becomes proportional to ln σ . Two noticeable features, which
are similar to the scaling for hazy, but aligned, environments,
given by Eq. (29), are that the redundancy is inversely
proportional to the logarithm of the information deficit and
that, for small δ, the redundancy is insensitive to the alignment
(or initial entropy) of the system. This supports the idea that
the redundancy has a universal behavior independent of the
system’s initial state.

3. Misaligned and hazy E
We now consider the case where E is both misaligned

and hazy. In Figs. 7(a) and 7(b), the mutual information is
plotted versus �F and h/hm for σ = 0.4 and σ = 0.8. Just
as with misalignment and haziness separately, one still gets
the formation of the classical plateau and, hence, one still
gets redundancy. For fairly hazy environments, the redundancy
behaves as for σ = 0 but now with a rescaled haziness h/hm.
The quantity hm represents the maximum information capacity
of a single environment qubit given its alignment with its
operator in the Hamiltonian. As before, the redundancy has

a linear region where it is proportional to 1 − h/hm. This is
shown in Fig. 7(c).

VI. CONCLUSIONS

We studied how information about a system of interest
proliferates throughout an environment under nonideal initial
conditions (namely hazy or misaligned initial environment
states). When a system is undergoing pure decoherence with
a set of independent environment components, we showed
that, after decoherence has taken place, an environment
fragment’s capacity to accept information about a system is
given by its ability to increase its entropy. Thus, increasing the
overlap of the environment with states that commute with
the interaction Hamiltonian (whether by misaligning it or
by increasing its haziness) diminishes its ability to increase
its entropy and therefore decreases its capacity to accept
information about the system. Prior to the onset of good
decoherence, complementary information about the system
(that is, information about the superposition of pointer states
of S) is transferred into the environment, where it is initially
spread among many fragments. After the onset of good
decoherence, this complementary information is encoded only
globally in the environment (i.e., individual fragments do
not contain it).8 Finally, we examined a model system of
a symmetric qubit environment. We found scaling relations
that demonstrate a universal behavior of the redundancy (i.e.,
behavior that is independent of the system’s initial state). Over-
all, our results show that although nonideal initial conditions
diminish the environment’s capacity to store information, the
environment still redundantly obtains information about the
system, demonstrating that Quantum Darwinism is robust
and nonideal environments still communicate information
redundantly.

8This type of distribution of information may also be of interest in
other areas of research, such as representing environments in real-time
simulations [26].
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APPENDIX A: QUBIT INTERACTING WITH A
SYMMETRIC ENVIRONMENT

The total state of SE evolves according to ρ(t) =
U(t)ρ(0)U†(t), where U(t) = exp (−ıHSE t) can be written as

U(t) = |0〉〈0| ⊗ [V(t)⊗
�E ] + |1〉〈1| ⊗ [V(−t)⊗

�E ]. (A1)

Here V(t) is the unitary matrix exp[−ıtσ z/2]. The evolution
of S is given by

ρS (t) =
(

s00 s01�E (t)
s10�

�
E (t) s11

)
, (A2)

with the total decoherence factor

�E (t) =
∏
k∈E

�k(t) (A3)

due to the environment E . Each component of the environment
contributes a partial factor

�k(t) ≡ tr[ρ̄r (t)] = cos(t) − ıσ sin(t) (A4)

to the total decoherence. The state of SF is

ρSF (t) =
(

s00ρ̃r (t)⊗
�F s01ρ̄r (t)⊗

�F�E/F (t)
s10ρ̄

†
r (t)⊗

�F��
E/F (t) s11ρ̃r (−t)⊗

�F

)
,

(A5)

where ρ̃r (t) = V(t)ρrV†(t) is a rotated density matrix on a
single environment qubit and ρ̄r (t) = V(t)ρrV(t) is an operator
on a single environment qubit.

The von Neumann entropy, HS (t), can be calculated
explicitly by diagonalizing ρS (t) to obtain HS (t) = H (κE (t))
with

κA(t) = 1
2 (1 +

√
(s11 − s00)2 + 4|s01|2|�A(t)|2). (A6)

The quantity κA(t) is one of the eigenvalues of the state of S
when it interacts only with the environment components k for
which k ∈ A. We can likewise readily obtain the entropy of
SF by utilizing Eq. (5): this entropy is equivalent to the sum
of the entropy of the system decohered solely by E/F , i.e., the
remainder of the environment, which is given by H (κE/F (t)),
and the entropy of the initial state of the F , HF (0) = �Fh.
Thus, the mutual information becomes

I (S : F) = [HF (t) − HF (0)]

+ [H (κE (t)) − H (κE/F (t))]. (A7)

To finish the calculation of the mutual information, we need
the remaining term in Eq. (1): the entropy HF (t). Generally,
the calculation of this entropy is difficult, as it requires
diagonalizing the reduced density matrix of F , which in this
case is

ρF (t) = s00ρ̃r (t)⊗
�F + s11ρ̃r (−t)⊗

�F . (A8)

Due the symmetry of the problem, however, Eq. (A8) can
be diagonalized efficiently numerically using the procedure
outlined in Appendix B. Further, in the case of a pure initial

environment, one can compute HF (t) analytically. In the
following subsections, we will examine several cases of how
the mutual information develops in time for different initial
states.

A. Pure or mixed S and pure E
When the environment is pure, the entropy of ρF (t) can be

found by purifying S using an ancillary system S̃ and noting
that HF (t) = HS̃SE/F (t). Let λ ≡ |s01/

√
s00s11| parametrize

the existing decoherence of S. Purifying the initial state of S
gives

|ψSS̃〉 = α|00〉 + β|11̃〉, (A9)

where |α|2 = s00, |β|2 = s11, and |1̃〉 = λ2|0〉 + √
1 − λ2|1〉 is

a state of S̃ that would give the existing decoherence of S. To
calculate the entropy, HF (t) = HS̃SE/F (t), we can use Eq. (5)
with S replaced by SS̃ to show that, in the presence of an
initially pure E (and hence, E/F), this entropy is equivalent to
the entropy of SS̃ decohered just by F . The latter is

ρSS̃ (t) = s00|00〉〈00| + √
s00s11�F (t)|00〉〈11̃|

+√
s00s11�

�
F (t)|11̃〉〈00| + s11|11̃〉〈11̃|. (A10)

Since |00〉 and |11̃〉 are orthogonal, the entropy can be obtained
from the eigenvalues of the matrix(

s00
√

s00s11�F (t)√
s00s11�

�
F (t) s11

)
, (A11)

which gives H (κ̃F (t)), with

κ̃A(t) = 1
2 (1 +

√
(s11 − s00)2 + 4s00s11|�A(t)|2). (A12)

Note that this result, HF (t) = H (κ̃F (t)), is indicating that the
entropy of an initially pure F with time is the same regardless
of whether the system was initially pure or mixed. Moreover,
as we will see in just a moment, only the discord changes when
S is initially mixed. The mutual information is therefore

I (S : F) = H (κ̃F (t)) + [H (κE (t)) − H (κE/F (t))], (A13)

where the last two terms in brackets give the quantum discord
(and the deviation from good decoherence) for an initially
pure E .

As a special case of the above, when S is pure κ̃ reduces to
κ in Eq. (A6) and the mutual information is

I (S : F) = H (κF (t)) + [H (κE (t)) − H (κE/F (t))]. (A14)

This result can be found much more readily by using the
equality HF (t) = HSE/F (t) for bipartite pure states. Then,
employing Eq. (7) for HSE/F (t) and HE/F (0) = 0 gives

HF (t) = HSdF (t). (A15)

Thus we obtain HF (t) = H (κF (t)). This shorter derivation for
initially pure S and E shows that the entropy of F is simply
the entropy of S when it is interacting solely with F [13].

B. Pure or mixed S and hazy E
When the environment is hazy, the entropy of ρF (t) cannot

be found by appealing to entropic properties of bipartite
pure states, as was done in the previous section. With our
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model, however, we can diagonalize ρF (t) directly by taking
advantage of the symmetry. By using the Wigner D matrices
[23–25], we can rewrite ρF (t) into block diagonal form (see
Appendix B), with a maximum block dimension equal to
2�F + 1. Thus, the complexity for diagonalizing ρF (t) is
reduced from exponential to polynomial in �F .

In addition, we can also obtain an analytical result for
the entropy when r00 = 1/2 and t = π/2. Under these two
conditions, the reduced density matrix of the environment
becomes

ρF (π/2) = s00

(
1
2 −ır01

ır10
1
2

)⊗�F
+ s11

(
1
2 ır01

−ır10
1
2

)⊗�F
.

(A16)

At this time, both terms are diagonal in the same basis.9 Thus,
the matrix can be diagonalized to yield

ρF (π/2) = s00

(
λ+ 0
0 λ−

)⊗�F
+ s11

(
λ− 0
0 λ+

)⊗�F
,

(A17)

where λ± = 1/2 ± |r01|. Its entropy is then

HF (π/2) = −
�F∑

n=0

(
�F
n

)
λF (n) log2[λF (n)], (A18)

where λF (n) = s00λ
n
−λ

�F−n
+ + s11λ

�F−n
− λn

+ are the degenerate
eigenvalues of ρF (π/2). The quantum discord at this time
is zero except when �F = �E , thus the mutual information is
given exactly by Eq. (9) when �F = �E . Since HF (0) = �Fh,
we obtain

I (S : F) = HF (π/2) − �Fh. (A19)

In Appendix C we find an asymptotic approximation to
Eq. (A19).

APPENDIX B: DIAGONALIZING ρF (t)

A fragmentF of the environment is described by the density
matrix [see Eq. (A8)]

ρF (t) = s00ρ̃r (t)⊗
�F + s11ρ̃r (−t)⊗

�F , (B1)

where ρ̃r (t) = V(t)ρrV†(t) is a rotated density matrix on a
single environment qubit and the initial density matrix is given
by Eq. (20):

ρr =
(

r00 r01

r10 r11

)
. (B2)

To calculate the entropy of ρF (t), our strategy is to rewrite
the operators of the form ρ̃r (±t)⊗

�F into direct sums of total
spin states so that the density matrix becomes block diagonal.
Each block can then be diagonalized separately and the
computational cost of the computing the entropy is polynomial
in �F rather than exponential. This process, which consists of
three steps, is illustrated in the schematic diagram shown in
Fig. 8.

9For real r01, this basis is given by the eigenstates of σy for each of
the qubits, see Fig. 2.

σzσn σn

|j,m z |j,m n|j,m n

s00ρ̃r (t)⊗F + s11ρ̃r (−t)⊗F s11ρ̃r (−t)⊗F
s00ρ̃r (t)⊗F

s11ρ̃r (−t)⊗F
s00ρ̃r (t)⊗F

s00ρ̃r (t)⊗F + s11ρ̃r (−t)⊗F

Dj (−γ ,−β ,−α )Dj (−γ,−β,−α)

D1/2 (α , β , γ )D1/2 (α, β, γ)

FIG. 8. (Color online) Schematic diagram of the rotating tech-
nique used to diagonalize the density matrix ρF (t). The density matrix
is split into two parts, s00ρ̃r (t)⊗

�F and +s11ρ̃r (−t)⊗
�F , which are each

separately rotated into the basis |j,m〉z by first going through the basis
in which the state ρ̃r (t) is diagonal.

First, we make a unitary transformation to diagonalize ρ̃r (t)
and ρ̃r (−t). This process can be alternatively understood as a
rotating of the density matrix ρ̃r (t) with a Wigner D matrix
[23–25], R(α,β,γ ), to change the representation from σz to
σ�n, where �n is the Bloch vector of the spin. The second step
is to rewrite ρ̃r (t)⊗

�F into direct sums of total spin states by
utilizing the Clebsch-Gordan coefficients. After this step the
representation is changed from σ�n to |j,m〉�n. The third step is
to rotate from the representation |j,m〉�n to |j,m〉z by a inverse
Wigner D matrix R(−γ, − β, − α) ≡ R−1(α,β,γ ). We apply
the rotating techniques separately to ρ̃r (t)⊗

�F and ρ̃r (−t)⊗
�F ,

but finally bring them both into the basis {|j,m〉z} where the
blocks are diagonalized.

The details of the procedure start with the rotation by the
angles α, β, and γ :

R(α,β,γ ) = e−iαJze−iβJy e−iγ Jz , (B3)

where Jx , Jy , and Jz are the components of the angular
momentum (which for our spin system are just the Pauli
matrices). The Wigner D matrix is a square matrix of
dimension 2j + 1 with general element

D
j

m,m′ = 〈j,m′|R(α,β,γ )|j,m〉 (B4)

= e−im′αd
j

m′,m(β)e−imγ , (B5)

where

d
j

m′,m(β)

= 〈j,m′|e−iβJy |j,m〉
= [(j + m′)!(j − m′)!(j + m)!(j − m)!]

1
2

×
min(j+m,j−m′)∑
s=max(0,m−m′)

(−1)m
′ −m+ s

(j + m − s)!s!(m′ − m + s)!(j − m′ − s)!

× (cos[β/2])2j+m−m′−2s(sin[β/2])m
′−m+2s . (B6)

The Euler angles α, β, γ in the rotation, Eq. (B4), are
completely determined by the unitary matrix that diagonalizes
ρ̃r (t), Uρ̃r (t)U † = Diag[λ+,λ−], which is

U =
⎡
⎣ −r01e

−it√
|r01|2+(r00−λ+)2

,
r00−λ+√

|r01|2+(r00−λ+)2

r11−λ−√
|r10|2+(r11−λ−)2

, −r10e
it√

|r10|2+(r11−λ−)2

⎤
⎦ . (B7)
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This is equal to the Wigner D matrix

D1/2(α,β,γ ) =
[
e−i(α+γ )/2 cos(β/2), −e−i(α−γ )/2 sin(β/2)

ei(α−γ )/2 sin(β/2), ei(α+γ )/2 cos(β/2)

]

(B8)

with the Euler angles

α = γ = t, (B9)

sin(β/2) = − r00 − λ+√
|r01|2 + (r00 − λ+)2

, (B10)

and

cos(β/2) = −r01√
|r01|2 + (r00 − λ+)2

. (B11)

The density matrix ρ̃r (t)⊗
�F becomes

ρ̃r (t)⊗
�F → Diag[λ+,λ−]⊗

�F (B12)

and similarly for ρ̃r (−t)⊗
�F .

Utilizing the Clebsch-Gordan coefficients, Eq. (B12) can
be rewritten as a direct sum of the total spin states,

Diag[λ+,λ−]⊗
�F → ⊕�F/2

j=0

(
M

⊕Bj

j

)
, (B13)

where

Mj = Diag

[
λ

�F
2 +j

+ λ
�F
2 −j

− ,λ
�F
2 +j−1

+ λ
�F
2 −j+1

− , . . . ,λ
�F
2 −j

+ λ
�F
2 +j

−

]
(B14)

and

Bj =
(

�F
�F/2 − j

)
−

(
�F

�F/2 − j − 1

)
. (B15)

The basis of the density matrix ρ̃r (t)⊗
�F is now {|j,m〉�n}, and

under the same procedure the density matrix ρ̃r (−t)⊗
�F will

be in the basis {|j,m〉�n′ } with the Bloch vector �n′. To get the
full density matrix, ρF (t), we need to transform them into the
same basis {|j,m〉z}, which can be done by rotating backward
using Dj (−γ, − β, − α) with the angles corresponding to the
forward rotation D1/2(α,β,γ ):

⊕�F/2
j=0

(
M

⊕Bj

j

) → ⊕�F/2
j=0[e−i(−γ )Jze−i(−β)Jy e−i(−α)Jz

×Mje
−iαJze−iβJy e−iγ Jz ]⊕Bj . (B16)

Now we can write ρF (t) = s00ρ̃r (t)⊗
�F + s11ρ̃r (−t)⊗

�F into
a block diagonal form in the basis {|j,m〉z}, which can be
diagonalized efficiently to obtain the entropy of F .

APPENDIX C: ASYMPTOTIC APPROXIMATION

In this appendix, we approximate the expression in
Eq. (A19) for large �F . Our starting point is to rewrite Eq. (A19)
as

I (S : F) = HS − s00

�F∑
n=0

(
�F
n

)
λn

−λ
�F−n
+

× log2

[
1 + s11

s00

(
λ−
λ+

)�F−2n
]

− s11

�F∑
n=0

(
�F
n

)
λ

�F−n
− λn

+
(C1)

× log2

[
1 + s00

s11

(
λ+
λ−

)�F−2n
]

≡ HS − �I (S : F),

where we extracted out the plateau value of the mutual
information, HS , and also the initial entropy of F , which
canceled the second term in Eq. (A19). The deviation of
the mutual information from its plateau value is defined as
�I (S : F), which is the term we will approximate. For large
�F , we can use the de Moivre-Laplace theorem to replace the
binomial coefficient:

2
�F

(
�F
n

)(
1

2

)�F
≈ 2

�F√
π�F/2

e−(n−�F/2)2/(�F/2). (C2)

Performing this replacement and rearranging some terms gives

�I (S : F) ≈ (2
√

λ−λ+)
�F√

π�F/2

�F∑
n=0

e−(n−�F/2)2/(�F/2)S(n), (C3)

where

S(n) ≡ s00

(
λ−
λ+

)n−�F/2

log2

[
1 + s11

s00

(
λ−
λ+

)�F−2n
]

+ s11

(
λ+
λ−

)n−�F/2

log2

[
1 + s00

s11

(
λ+
λ−

)�F−2n
]

. (C4)

To see how the mutual information approaches the plateau for
large �F , we can make a further approximation by recognizing
that the function, S(n), within the sum peaks at

n =
�F − (

ln s00
s11

)/(
ln λ−

λ+

)
2

(C5)

and decays exponentially when away from this maximum at a
length scale independent of �F . When �F is large enough,
the Gaussian, which has a width proportional to

√
�F , is

approximately constant where S(n) is non-negligible. Thus,
for large �F , we approximate the Gaussian as a constant (with
its value set at its maximum) and obtain

�I (S : F) ≈ (2
√

λ−λ+)
�F√

π�F/2

�F∑
n=0

S(n). (C6)

This already gives the asymptotic behavior of the mutual
information: For large enough �F , the sum over S(n) is
independent of �F because of the exponential decay of S(n)
away from its maximum. However, to remove the sum and
obtain a compact expression, we can approximate the sum over
S(n) by an integral. When E is fairly hazy, S(n) is smooth as
function of n and this approximation is a good one (although,
it will have a finite relative error as �F → ∞). Changing the
sum to an integral and extending the limits to infinity gives the
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FIG. 9. (Color online) (a) Deviation of the mutual information from its plateau value, �I (S : F) = HS − I (S : F), versus the fragment
size �F . The exact deviation is plotted for h = 0.5, s00 = 1/2 (black squares); h = 0.5, s00 = 1/16 (red triangles); h = 0.9, s00 = 1/2 (blue
diamonds); and h = 0.9, s00 = 1/16 (green inverse triangles), with the approximate data plotted as a line of the same color as its corresponding
exact data. For all but the smallest �F , the approximation gives the correct decay of the mutual information to its plateau value. Further, changing
the value of HS (by shifting s00) does not change the decay behavior to the plateau. (b) Relative error of the asymptotic approximation versus
�F . The errors are for h = 0.5, s00 = 1/2 (black line); h = 0.5, s00 = 1/16 (red dashed line); h = 0.9, s00 = 1/2 (blue dotted line); and h = 0.9,
s00 = 1/16 (green dash-dotted line). The errors decay initially as the approximation of the binomial coefficient by a constant becomes better,
but the approximation will contain a finite relative error as �F → ∞ due to the approximation of the sum by an integral.

approximate deviation

�I (S : F) ≈ (2
√

λ−λ+)
�F√

π�F/2

∫ ∞

−∞
dnS(n)

≈ (2
√

λ−λ+)
�F√

π�F/2

2π
√

s00s11

(ln 2)
(

ln λ+
λ−

) ≡ �Iapp(S : F),

(C7)

which is the asymptotic approximation used within the article.
In Fig. 9(a) we plot this asymptotic approximation along with
the exact data for the deviation of the mutual information from
its plateau value. In Fig. 9(b) we plot the relative error∣∣∣∣�Iapp(S : F) − �I (S : F)

�I (S : F)

∣∣∣∣ . (C8)

As can been seen from the figures, the asymptotic approxima-
tion correctly describes the decay of the mutual information to
its plateau value.
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