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We compare the Landauer, Kubo, and microcanonical [J. Phys.: Condens. Matter 16, 8025 (2005)] approaches
to quantum transport for the average current, the entanglement entropy, and the semiclassical full-counting
statistics (FCS). Our focus is on the applicability of these approaches to isolated quantum systems such as
ultracold atoms in engineered optical potentials. For two lattices connected by a junction, we find that the current
and particle number fluctuations from the microcanonical approach compare well with the values predicted by
the Landauer formalism and FCS assuming a binomial distribution. However, we demonstrate that well-defined
reservoirs (i.e., particles in Fermi-Dirac distributions) are not present for a substantial duration of the quasi-steady
state. Thus, on the one hand, the Landauer assumption of reservoirs and/or inelastic effects is not necessary for
establishing a quasi-steady state. Maintaining such a state indefinitely requires an infinite system, and in this limit
well-defined Fermi-Dirac distributions can occur. On the other hand, as we show, the existence of a finite speed
of particle propagation preserves the quasi-steady state irrespective of the existence of well-defined reservoirs.
This indicates that global observables in finite systems may be substantially different from those predicted by
an uncritical application of the Landauer formalism, with its underlying thermodynamic limit. Therefore, the
microcanonical formalism which is designed for closed, finite-size quantum systems seems more suitable for
studying particle dynamics in ultracold atoms. Our results highlight both the connection and differences with
more traditional approaches to calculating transport properties in condensed matter systems, and will help guide
the way to their simulations in cold-atom systems.
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I. INTRODUCTION

Experimental investigations of transport phenomena in
ultracold atoms confined in engineered optical potentials
offer a test bed for transport theories at the nanoscale.
Several phenomena, such as the sloshing motion of an
atomic cloud in optical lattices [1], directed transport using
a quantum ratchet [2], relaxation of noninteracting and
interacting fermions in optical lattices [3], and others have been
demonstrated. Their applications in atomtronics [4], which
aims at simulating electronics by using controllable atomic
systems, are promising [5–9]. It is thus important to develop
proper theoretical and computational methods to direct future
progress in this field.

Due to the quantum nature of atoms, finite particle numbers,
and small sizes of these systems, the applicability of semiclas-
sical approaches, such as the Boltzmann equation, become
questionable. The Landauer formalism [10,11], which has
been widely implemented in mesoscopic physics, is naturally
appealing for studying transport phenomena in ultracold
atoms. Those approaches and their generalizations have been
applied to study various problems in cold atoms [12–17]. In
addition to steady-state properties, one may want to study
fluctuation effects and correlations using full-counting statis-
tics (FCS) [18]. An examination of the underlying assumptions
of those well-known formalisms, however, raises questions on
their applicability to ultracold atoms.

The Landauer formalism, which is designed for open
systems, assumes the existence of two reservoirs that supply
particles to be transmitted through a junction region. Since
the particle number and energy (when no external time-

dependent fields are present) in ultracold atomic experiments
are (to a very good approximation) conserved, the concept
of a reservoir does not necessarily hold. FCS generally
assumes the transmitted particles behave like billiards with
a well-defined tunneling probability distribution. Whether
such an assumption holds true in finite, closed systems will
determine whether the formalism can be applied to cold-atom
experiments as well.

An alternative approach for studying transport in quan-
tum systems is within the microcanonical formalism
(MCF) [11,19,20]. This formalism is based on using closed
quantum systems driven out of equilibrium by a change of
parameters (e.g., an external bias or a density imbalance) to
calculate transport properties. The conservation of particle
number and energy are naturally built into this formalism,
and there is no need to introduce reservoirs and one can fully
preserve the wave nature of the particles. This formalism
has also been integrated with density-functional theory for
investigating quantum transport through atomic or molecular
junctions [21,22]. The microcanonical formalism is partic-
ularly suitable for ultracold atoms, which are accurately
modeled as isolated quantum systems. In this respect, the
formalism has already been developed to study transport
phenomena in these systems [23–28].

The goal of this paper is to compare the microcanonical
approach to the Landauer formalism and determine which
assumptions lead to the same observables, such as the average
current and FCS. The MCF is generically applicable to closed
quantum systems, and here we use transport of ultracold non-
interacting fermions in one-dimensional (1D) optical lattices
as a particular example. A possible setup is shown in Fig. 1.
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FIG. 1. Schematic of a one-dimensional lattice and transport
induced by (a) application of a bias at t = 0, where a step-function
bias is applied to the system and a current flows through the middle
link or (b) connecting a link between the two initially disconnected
parts at t = 0.

Unlike electronic systems where the Coulomb interactions
cannot be really switched off, and therefore for which this
comparison would be more academic, cold-atom experiments
allow for a relatively easy tuning of interactions among
particles down to the noninteracting limit. The microcanonical
formalism can, of course, be applied to systems with Coulomb
interactions. However, here we focus only on its applications
to noninteracting cold-atom systems. While electrons are nat-
urally confined in solid-state systems, a background harmonic
trapping potential is often implemented in addition to the
optical lattice for confining atoms. However, recent advance
in trapping atoms in ring-shape geometries [5,29] or a uniform
potential [30] makes it possible to consider homogeneous
cold-atom systems. Moreover, a weak background harmonic
potential does not change the qualitative conclusions from
the MCF, as illustrated in Ref. [23]. Therefore we focus here
on the dynamics of cold atoms in optical lattices without a
background harmonic trapping potential.

We find that the steady-state current and particle number
fluctuations from the microcanonical formalism approach
the values of the average current and FCS predicted from
the Landauer formalism already at moderate system sizes.
However, we also find—for finite times—that one of the
assumptions of the Landauer formalism is unnecessary:
The particle distributions in the two lattices supplying and
absorbing particles do not need to be populated according to
Fermi-Dirac distributions. In fact, their occupation deviates
from the equilibrium distribution during the whole duration of
a quasi-steady state. Furthermore, the results from the micro-
canonical formalism agree with the predictions from the FCS

semiclassical formula by assuming a binomial distribution of
the transmitted particles, ruling out alternative semiclassical
descriptions. To connect the different approaches, we also
develop a Kubo formalism based on the microcanonical picture
of transport, which we use to calculate explicit expressions for
transport in closed systems. This gives us an analytical method
to investigate dynamical transport phenomena in nanoscale and
ultracold atomic systems.

In addition to the average current and FCS, we also inves-
tigate the dynamical evolution of the entanglement entropy,
which quantifies the correlations between two connected
systems. The entanglement entropy is of broad interest in
many fields, ranging from black hole physics [31] to quantum
information science [32]. This quantity can be easily evaluated
using the microcanonical formalism. A semiclassical formula
based on FCS of two noninteracting fermionic systems
connected by a junction has been derived in Ref. [18] and
generalized to many-body systems [33,34]. Reference [18]
predicts a linear growth of the entanglement entropy as
time increases. Again, we find that the results from the
microcanonical formalism match the prediction from the
semiclassical formula by assuming a binomial distribution of
the transmitted particles. Assuming an alternative distribution
results in predictions that are readily distinguishable.

This paper is organized as follows: Section II reviews
the Landauer formalism and its assumptions. Section III
introduces the microcanonical formalism and its applications.
The spatially resolved current from the MCF is discussed
in Sec. IV. Section V reviews the FCS. Section VI shows
the absence of memory effects in transport of noninteracting
fermions. Section VII compares the results from the MCF
and Landauer formalism. Importantly, the deviation from the
equilibrium Fermi-Dirac distribution is clearly demonstrated.
Section VIII shows the light-cone structure of wave propaga-
tion monitored by the MCF. Section IX reviews the Kubo
formalism and how it helps connect the two approaches.
Finally, Sec. X concludes our study with suggestions of future
work.

II. LANDAUER FORMALISM

By assuming the existence of a steady-state current between
two reservoirs bridged by a central link, the current can
be estimated from the Landauer formula with the help of,
e.g., Green’s functions [10,11]. For a detailed description
of the physical assumptions behind this formalism we re-
fer the reader to Ref. [11]. Here, we mention only the
assumptions that will be relevant for our comparison with
the microcanonical formalism: (1) A steady-state current
is assumed to exist. Whether a steady-state current always
emerges from a given nonequilibrium condition is not at
all obvious [11]. (2) Two macroscopic reservoirs—holding
noninteracting fermions populated according to Fermi-Dirac
distributions—are also assumed. The separation of the system
into reservoirs and a region of interest is not always easy to
determine for an actual physical structure. (3) The transport at
the junction does not provide any feedback to the reservoirs.

While one can construct configurations where a steady-state
current does not exist [35], in the case where two 1D chains are
connected by a central junction (as considered in this paper),

023624-2



LANDAUER, KUBO, AND MICROCANONICAL APPROACHES . . . PHYSICAL REVIEW A 90, 023624 (2014)

there is always a steady-state current, as will be verified in
the microcanonical formalism (see Sec. IV). Therefore, we do
not focus here on assumption (1), but rather on (2) and (3).
As will be shown in Sec. VII, the distributions on both sides
deviates from the Fermi-Dirac distribution when the system
maintains a steady state so assumption (2) is not necessary
for observing a steady-state current. Moreover, Sec. VIII will
show that density changes can propagate into regimes away
from the junction so there can be feedback and assumption (3)
is also not necessary.

On the other hand, in this section we calculate the current
using the Landauer formalism for two configurations of a
junction between two 1D lattices. One can insert a link with a
tunable hopping coefficient t̄ ′ in the middle of a chain, which
we call the weak-link case, or insert a central site with tunable
onsite energy EC , which we call the central-site case. In
cold-atom experiments it has been shown that one can suppress
the transmission of atoms by introducing an optical barrier [5]
or by introducing a constriction in the trapping potential [6].
Therefore the tunneling coefficient and onsite energy may be
tuned simultaneously. Here we separate the effects of tuning
the two parameters and one will see that there is no observable
difference if the transmission coefficient T can be found and
physical quantities are compared at the same T . We consider
a uniform bias EL = μB/2 on the left half and, similarly,
ER = −μB/2 on the right half. By making the two lattices on
both sides semi-infinite, they behave as the two reservoirs with
different electrochemical potentials. The hopping coefficient
is denoted by t̄ and the unit of time is t0 = �/t̄ . We set the
electric charge e ≡ 1 and � ≡ 1. The length is measured in
units of the lattice constant.

The Green’s function of the left (right) semi-infinite
chain can be derived using recursive relations, which
lead to [36] GL(R)(E) = 1/[E − EL(R) − �L(R)(E)], where
�L(R) = (1/2)[E − EL(R) − i

√
4t̄2 − (E − EL(R))2]. The re-

tarded Green’s function of the junction is G(E) = 1/[E −
EC − �CL − �CR], where �CL(CR) = V 2

CL(CR)GL(R)(E) and
VCL(CR) is the coupling to the left (right) chain [11,37]. The
current (including both spins) is [11]

I = 1

π

∫ ∞

−∞
dE(fL − fR)T (E) = 1

π

∫ μB
2

− μB
2

dET (E), (1)

where the reservoirs are taken to be at zero temperature, as we
will throughout this work. The transmission coefficient is

T (E) = �L�R|G(E)|2, (2)

where fL(R) denotes the density distribution of the left (right)
chain, i.e., the Fermi-Dirac distribution function, and �L(R) =
−2Im�CL(CR).

For a uniform chain with t̄ ′ = t̄ , VCL(CR) = t̄ . After some
algebra, the current is given by

I = 1

π

∫ μB
2

− μB
2

4gLgRdE

μ2
B + (gL + gR)2

, (3)

where gL(R) = √
4t̄2 − (E − EL(R))2. To the leading order of

μB , Eq. (3) gives I � μBt̄/π . Moreover, it can be shown that
T (E = 0) → 1 as μB → 0.
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FIG. 2. (Color online) The transmission coefficients T (E) at
μB = 0 for (a) the weak-link case (t̄ ′/t̄ = 1,0.5,0.2 from top to
bottom) and (b) the central-site case (EC/t̄ = 0,2,8 from top to
bottom).

For the weak-link case, if we take the last site of the left
chain as the central site, VCL = t̄ , VCR = t̄ ′, and EC = EL.
The current is

I = 1

π

∫ μB
2

− μB
2

4g2gLgRdE

[(E − EL) − g2(E − ER)]2 + (gL + g2gR)2
,

(4)

where g ≡ (t̄ ′/t̄). When g � 1, to the leading order of g and
then to the leading order of μB , one obtains I � 4μBg2 t̄/π .
For the central-site case, VCL = VCR = t̄ and EC can be tuned.
The current is

I = 1

π

∫ μB
2

− μB
2

4gLgRdE

(EL + ER − 2EC)2 + (gL + gR)2
. (5)

Figure 2 shows T (E), which is symmetric about E = 0, for
both cases with selected parameters.

III. MICROCANONICAL FORMALISM

In the microcanonical approach to quantum transport [19],
one considers a finite system (say two electrodes and a
junction) and a finite number of particles with Hamiltonian
H . The system is prepared in an initial state |�0〉 which
is an eigenstate of some Hamiltonian H0 	= H . From a
physical point of view this initial state may represent, e.g.,
a charge, particle, or energy imbalance between the two finite
electrodes that sandwich the junction. The system is then left
to evolve from this initial condition under the dynamics of
H , and the average current across some surface or any other
observable is monitored in time. The dynamics considered here
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may be considered as quantum quenches [38,39]. Note that,
even if we assume the two electrodes biased as in the Landauer
formalism, in this closed-system approach it is not at all
obvious that the average current establishes any (quasi-)steady
state in the course of time [11,19,40].

A. Implementation of the MCF

We adopt the implementation of the microcanonical formal-
ism as discussed in Refs. [23,24], which is an extension of the
scheme proposed in Ref. [20]. One advantage of this extended
scheme is that the dynamics of particle density fluctuations,
entanglement entropy, and density distributions can be easily
monitored. We consider a one-dimensional Hamiltonian H =
HL + HR + HC , where HL/R is a lattice of N/2 sites. The
system is filled with N/2 two-component fermions (with equal
number in each species). In the tight-binding approximation
we choose

HL/R = −t̄
∑

〈ij〉,L/R

c
†
i cj + EL/R

∑
i∈L/R

c
†
i ci . (6)

Here 〈ij 〉 denotes nearest-neighbor pairs and we suppress
the spin index, and explicitly state where a summation over
the spin is performed in our results. Here we only consider
quadratic Hamiltonians. In the presence of other interaction
terms, one may need to consider approximate methods [26].

We consider two possible ways to set the system out
of equilibrium. In the first scenario the system is initially
prepared in the ground state of the unbiased Hamiltonian
H0 with EL = ER = 0 and then it evolves according to a
biased Hamiltonian H . All conclusions in this work remain
unchanged if we instead prepare the system in the ground
state of the biased H and then let it evolve according to
the unbiased H0. In other words, there is a correspondence
between a particle imbalance and an energy imbalance for
the systems we consider. In the second scenario two initially
disconnected lattices are connected, where one cannot swap
the roles of H and H0. We remark that the first scenario
is closely related to the studies of Ref. [41] where photons
are introduced to adjust the onsite energy of atoms in certain
parts of the lattice. The second scenario is relevant to the case
where an optical barrier separating the lattice into two parts is
lifted [24].

For the weak-link case HC = −t̄ ′(c†N/2cN/2+1 + c
†
N/2+1

cN/2), where 0 � t̄ ′ � t̄ , while for the central-site case HC =
ECc

†
N/2+1cN/2+1 − t̄(c†N/2cN/2+1 + c

†
N/2+1cN/2) − t̄(c†N/2+1

cN/2+2 + c
†
N/2+2cN/2+1). For time t < 0, EL/R = 0 and

the system is in the ground state of H0. For t > 0 we set
EL = μB/2 and ER = −μB/2 and let the system evolve.
Figure 1 illustrates this process for the weak-link case. A
uniform chain with t̄ ′ = t̄ in the weak-link case has been shown
to have a quasi-steady-state current (QSSC) at a small bias [20]
for a system as small as N = 60. The QSSC is defined as a
plateau in the current as a function of t and it usually spans
the range (N/4)t0 � t � (N/2)t0. In the thermodynamic limit
with finite filling, the QSSC becomes a steady current [24].
In contrast, noninteracting bosons in their ground state do not
support a QSSC [23,24]. The dependence of the magnitude of
the QSSC on the initial filling was discussed in Refs. [23,24]

and here we consider the case with Np/N = 1/2, where Np

denotes the number of particles in the system, unless specified
otherwise.

To gain more insight into the dynamics of the system, we
write down the correlation matrix C(t) with elements cij (t) =
〈GS0|c†i (t)cj (t)|GS0〉, where |GS0〉 denotes the ground state
of H0, and derive the current and entanglement entropy from
it. One can use unitary transformations cj = ∑

k(U0)jkak and
cj = ∑

k(Ue)jkdk to rewrite H0 and H as

H0 =
∑

k

ε0
k a

†
kak; H =

∑
p

εe
pd†

pdp. (7)

Here ε0
k and εe

p are the energy spectra of H0 and H , respectively.

The initial state is then |GS0〉 = (�N/2
k=1a

†
k)|0〉, where |0〉 is

the vacuum. From the equation of motion i[dcj (t)/dt] =
[cj (t),H ] it follows cj (t) = ∑

p(Ue)jpdp(0) exp(−iεe
pt). The

initial correlation functions are 〈GS0|a†
k(0)ak′(0)|GS0〉 =

θ (N/2 − k)δk,k′ since fermions occupy all states below the
Fermi energy, where θ (N/2 − k) is 1 if k � N/2, and 0
otherwise. Then it follows,

cij (t) =
N∑

p,p′=1

(U †
e )pi(Ue)jp′Dpp′(0)ei(εe

p−εe
p′ )t ;

Dpp′(0) =
N∑

m,m′=1

N/2∑
k=1

(U †
e )p′m′(U0)m′k(U †

0 )km(Ue)mp. (8)

Here Dpp′(0) ≡ 〈GS0|d†
p(0)dp′ (0)|GS0〉.

B. Current, entanglement entropy, and particle fluctuations

The current flowing from left to right for one species
is I = −〈dN̂L(t)/dt〉, where N̂L(t) = ∑N/2

i=1 c
†
i (t)ci(t). It can

be shown that for the Hamiltonian considered here, I =
4t̄ ′Im{c(N/2),(N/2+1)(t)}, where a factor of 2 for the two spin
components is included. This is equivalent to the expec-
tation value of the current operator Î = −it̄ ′(c†N/2cN/2+1 −
c
†
N/2+1cN/2). The MCF can be generalized to include finite-

temperature effects in the initial state [23], but here we focus
on the ground state.

Figure 3 compares the current predicted by the Landauer
formula for the weak-link case, Eq. (4), to the simulations using
the MCF for the weak-link as well as the central-site cases with
μB = 0.2t̄ . In the limit where μB → 0, the Landauer formulas
for the central-site case, Eq. (5), produces results that fully
agree with the results from the weak-link case, Eq. (4). When
μB is finite, the two cases differ by a negligible amount due to
the slightly different T (E). One can see that the currents from
the MCF agree well with that from the Landauer formula.

The entanglement entropy between the left and right halves,
s, for one species at time t can be evaluated as follows [18]. We
define a (N/2) × (N/2) matrix M = PLC(t)PL with elements
Mij , where the projection operator PL = diag(1N/2,0N/2).
Then the entanglement entropy can be obtained from the
expression,

s = −Tr[M log M + (1 − M) log(1 − M)]. (9)
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FIG. 3. (Color online) The current from the Landauer formula for
the weak-link case, Eq. (4), (black line) and the currents in the quasi-
steady states of the microcanonical simulations for the weak-link case
(red circles) and the central-site case (green squares) as a function
of the transmission coefficient T = T (E = 0). (Insets) Currents as
a function of time from the microcanonical simulations (solid lines;
the dashed lines represent the Landauer value). The upper (lower)
one corresponds to the weak-link (central-site) case. From top to
bottom for the upper inset, t̄ ′/t̄ = 1.0,0.5,0.1; for the lower inset,
EC/t̄ = 0,2,8. Here μB = 0.2t̄ and N = 512.

We use log base 2, as is convention. The Hermitian matrix Mij

has eigenvalues vi , i = 1 . . . N/2. Then,

s(t) =
N/2∑
i=1

[−vi log(vi) − (1 − vi) log(1 − vi)]. (10)

This expression may be further simplified by using approxima-
tions from the semiclassical FCS [18] and will be discussed
later on. The noninteracting fermions studied here may be
regarded as a limiting case of a XXZ spin chain, whose
entanglement entropy (due to the dynamics of magnetization)
has been studied in Ref. [42].

Now we derive the full quantum-mechanical expressions
for the equal-time number fluctuations of the left half lattice.
Let n̂i = c

†
i ci and N̂L = ∑N/2

i=1 n̂i . Then the number of particles
in the left part is NL = 〈N̂L〉 = ∑N/2

i=1 cii . We define the equal-
time number fluctuations of the left half as


N2
L = 〈(N̂L − NL)2〉 = 〈

N̂2
L

〉 − N2
L. (11)

The moments of N̂L can be obtained from

〈
N̂2

L

〉 =
N/2∑
i=1

〈
n̂2

i

〉 + 2
N/2∑
i<j

〈n̂i n̂j 〉. (12)

From Wick’s theorem or exact calculations, 〈n̂α
i 〉 = 〈n̂i〉 = ni

for all positive integer α, where ni = cii . The other correlation
functions can be obtained from Wick’s theorem so that

〈n̂i n̂j 〉 = ninj − |〈c†i cj 〉|2. (13)

IV. SPATIAL RESOLUTION OF THE CURRENT IN MCF

We stress an important feature of the MCF formalism. One
can see from Eq. (8) and its context that MCF monitors the
dynamics in both energy basis and real space. In contrast, the

Landauer formalism as shown in Eq. (1) only reveals informa-
tion in the energy basis. The ability of the MCF to trace the
dynamics in real space allows us to address a crucial question:
How do particles from different sites contribute to the current?

To clearly demonstrate the importance of the information
from the dynamics in real space, we consider a simplified initial
condition where N lattice sites are divided into the left N/2
sites and the right N/2 sites with each left site occupied by
one fermion and each right site empty. We consider a uniform
lattice here with a tunneling coefficient t̄ . The corresponding
correlation matrix is cij (t = 0) = δij if 1 � i,j � (N/2) and
zero otherwise. Equation (8) becomes

cij (t) =
N/2∑
m=1

N∑
p,p′=1

(U †
e )pi(Ue)jp′(U †

e )mp(Ue)p′me
i(εe

p−εe
p′ )t .

(14)

One important insight from this expression is that the index
m traces the contribution from the initially filled mth site on
the left. Therefore in the current I = −2t̄Im(cN/2,N/2+1) it is
meaningful to discuss where does the current come from as
time evolves.

This simplified case, despite its compactness and clarity, is
relevant to several situations realizable in experiments. Two
potential examples are as follows: (1) initially a large step-
function bias is applied to a nanowire with a small energy
bandwidth so that all mobile particles are driven to the left half
and then the bias is removed to allow a current to flow, and (2)
ultracold atoms are loaded in an optical lattice so that there is
one atom per lattice site. Then a focus laser beam excites the
atoms on the right half lattice so that they leave the lattice and
create a vacuum region. The atoms on the filled left part will
then flow to the right and build a current. Thus the physics of
this simplified case is relevant to both our deeper understanding
of transport phenomena and advances in experiments.

Figure 4 shows the total current of this case with N = 512
and clearly there is a quasi-steady-state current. When we

FIG. 4. (Color online) Spatial decomposition of the contribution
to the current. The black line labeled Itot shows the current from an
N = 512 lattice with the left half initially filled with one fermion per
site. We plot the contributions from sections of 32 sites each to the
left of the middle of the whole lattice and the corresponding currents
show up in bursts. The bursts, from left to right on the plot, correspond
to the current from the first, second, . . . , sixth sections of 32 sites to
the left away from the middle (the 256th site).
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determine the contributions from each section of 32 lattice sites
to the left of the middle (256th site), each contribution comes
in a burst following the previous burst from the section to its
right. Thus the burst from the section of the 225th site to the
256th site crosses the middle first, followed by the burst from
the section of the 193th site to the 224th sites, and so on, with
each burst having a decaying tail. This succession of bursts
gives a physical justification of the reason the semiclassical
distribution assumed in FCS is binomial, and why other
distributions can be excluded (see below). Each burst peak
plus all the tails from previous bursts add up to maintain the
observed quasi-steady-state current. The MCF formalism thus
provides more insights into how a quasi-steady-state current
forms and this is certainly beyond the scope of the Landauer’s
formalism. Since some spin chain problems can be mapped
to fermions in one dimension, our study is relevant to the
dynamics of magnetization in these cases as well [43].

V. SEMICLASSICAL FCS FORMALISM

For two 1D noninteracting fermionic systems connected by
a central barrier, it has been proposed [18] that an expression
for the entanglement entropy can be derived from FCS
assuming a binomial distribution of the transmitted particle
number. In linear response, it has the form,


s


t
= −2

μB

h
[T log T + (1 − T ) log(1 − T )]. (15)

Here, T is the transmission coefficient at the Fermi energy.
The second moment of transmitted particle numbers, C2,
is important because it may be inferred from shot-noise
measurements. Moreover, the spectrum of current fluctuations
through the barrier, Psn, is related to C2 by Psn = C2/t .
Reference [18] gives the prediction for Psn:

Psn = C2

t
= 2μB

h
T (1 − T ). (16)

We will briefly review the derivations for these expressions.
In a semiclassical description, the second moment of

transmitted particle numbers, C2, is equivalent to the number
fluctuations of the left half of the system if the number of
particles are conserved. This can be understood as follows.
Let us assume that at time t there are NL0 particles on the
left. At time t + 
t , if there are NT particles passing through
the barrier, the total number of particles on the left becomes
NL = NL0 − NT . When NL0 is treated as a number, one has
C2 = 〈N2

T 〉 − 〈NT 〉2 = 〈N2
L〉 − 〈NL〉2 = 
N2

L.
In a fully quantum-mechanical description, however, NL0 is

an operator and the cross-correlation 〈N̂L0N̂T 〉 	= 〈N̂L0〉〈N̂T 〉
may introduce corrections to the expression. In the micro-
canonical formalism, the fully quantum-mechanical equal-
time number fluctuations, 
N2

L, can be monitored. We will
compare this with the prediction of C2 from the semiclassical
formula Eq. (16) and see how important the quantum correc-
tions are.

We summarize how the moments and entanglement entropy
can be evaluated from semiclassical FSC [18]. The character-
istic function (CF) of transmission of fermions of one species
is χ (λ) = ∑∞

n=−∞ Pne
iλn, where Pn is the probability of n

fermions being transmitted. In terms of cumulants of FCS,

log χ (λ) =
∞∑

m=1

(iλ)m

m!
Cm. (17)

Importantly, the generating function is shown to be [18]

χ (λ) = det[(1 − M + Meiλ)e−iλX], (18)

where X = exp(iH t)C(0)PL exp(−iH t) and PL is the pro-
jection operator into the left half lattice. Using det(AB) =
det(A) det(B) and log det(A) = T r log(A) one obtains

log χ (λ) = −iλx + log[det(1 − M + Meiλ)], (19)

where x = Tr(X) and Tr denotes the trace. The matrix
M can be diagonalized as M = SDMS†, where DM =
diag(v1, . . . ,vN/2) and S is a unitary matrix. Then we get the
final expression,

log χ (λ) = −iλx + log
N/2∏
j=1

(1 − vj + vj e
iλ). (20)

The second cumulant can be obtained from

C2 = ∂2 log χ (λ)

∂(iλ)2

∣∣∣
λ→0

=
N/2∑
j=1

(
vj − v2

j

)
. (21)

The entanglement entropy defined in Eq. (9) can be
calculated as

s = −
∫ 1

0
dzμ(z)[z log z + (1 − z) log(1 − z)]. (22)

Here z = 1/(1 − eiλ) and the spectral weight μ(z) is given by

μ(z) = 1

π
Im∂z log χ (z − i0+). (23)

The CF of a binomial distribution with a transmitted prob-
ability T is χ (λ) = (1 − T + T eiλ)N = (1 − T/z)N , where
N = 2μB
t/h is the flux of incoming particles. The spectral
weight is then

μ(z) = 1

π
Im∂z log

(
1 − T

z − i0+

)

= N T

z
δ(z − T )

= N δ(z − T ). (24)

In this derivation we have used 1/(x − i0+) = P (1/x) +
iπδ(x), δ(z(z − T )) = (1/z)δ(z − T ), and (T/z)δ(z − T ) =
δ(z − T ), where P denotes the Cauchy principal value. Then
the entanglement entropy of Eq. (22) leads to the expression
of Eq. (15). A similar calculation using Eq. (21) gives the
expression of Eq. (16).

VI. ABSENCE OF MEMORY EFFECTS FOR
NONINTERACTING SYSTEMS

Before presenting a comparison of the MCF results with
those of the Landauer formalism, we first investigate how
sensitive the MCF results are to the time dependence of
the switch-on of the bias. This is important because in the
Landauer formalism a steady state is assumed from the outset,
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FIG. 5. (Color online) (a) Current and (b) entanglement entropy
for different time dependence of the bias μB = (t/tm)α t̄ for t < tm.
Here tm = 10t0, t̄ ′/t̄ = 0.5, N = 256, and Np = 128. We show the
results for α = 0.1,1,10 labeled next to each curve along with the
results from a sudden quench (dashed lines) and from a multistep
switching-on (dot-dash line).

while in the MCF a quasi-steady state develops in time and
therefore its magnitude can be dependent on initial conditions
and transient behavior of the bias.

So far we only considered a sudden quench so that μB is
abruptly switched to its full value. The MCF can be applied
to other scenarios beyond a sudden quench. Here we consider
situations where μB is switched on at a finite rate and reaches
its full value at time tm. Here, we focus on the weak-link case
and one has to monitor the dynamics of the correlation matrix
by solving the equations of motion,

i
∂〈c†i cj 〉

∂t
= X − μB

2
〈c†i cj 〉i∈L + μB

2
〈c†i cj 〉j∈L

+ μB

2
〈c†i cj 〉i∈R − μB

2
〈c†i cj 〉j∈R. (25)

Here, X ≡ [t̄ ′δi,N/2 + t̄(1 − δi,N/2)]〈c†i+1cj 〉 + [t̄ ′δi,N/2+1 +
t̄(1−δi,N/2+1)]〈c†i−1cj 〉−[t̄ ′δj,N/2 + t̄(1 − δj,N/2)]〈c†i cj+1〉 −
[t̄ ′δj,N/2+1 + t̄(1 − δj,N/2+1)]〈c†i cj−1〉. The equations of
motion are derived from i(∂〈c†i cj 〉/∂t) = 〈[c†i ,H ]cj 〉 +
〈c†i [cj ,H ]〉, where [·,·] denotes the commutator of the cor-
responding operators. We assume that the dynamics of the two
spins are identical and the initial condition is the same as that
in the sudden-quench case.

Figure 5 shows the current and entanglement entropy
from different cases with μB(t) = (t/tm)αt̄ for t < tm and
μB = t̄ for t � tm. One can see that despite different transient
behaviors, the currents reach the same magnitude when QSSCs
emerge. Moreover, the slopes of the entanglement entropy
are also the same in the regime where QSSCs emerge. We
find the same conclusion when tm is varied. Importantly, one
may overexcite the system by tuning the bias above its final

FIG. 6. (Color online) (a) Averaged current [Eq. (26)] and (b)
slope of the entanglement entropy for different time dependence of
the bias μB (t/tm)α t̄ for t < tm. Here tm = 10t0, t̄ ′/t̄ = 0.5 (black),
and t̄ ′/t̄ = 1 (red); N = 256 and Np = 128. We show the results for
α = 0.01,0.1,1,10,100 along with the results from a sudden quench
(dashed lines).

constant value, and yet this spike does not affect the height of
the QSSC or the slope of the entanglement entropy as shown
by the dot-dash lines in Fig. 5.

Our observations then suggest that there is no observable
memory effect in the QSSC and entanglement entropy of
noninteracting fermions driven by a step-function bias because
those observables are not sensitive to the details of how the
bias is turned on. However, the robustness of the QSSC against
different time dependencies of the switch-on of the bias may
not hold in the presence of interactions, and we leave this study
for future work.

Figure 6 shows the averaged current,

〈I 〉 = 1

50t0

∫ 100t0

50t0

dtI (t), (26)

and the slope of s in the region 50t0 � t � 100t0 for α =
0.01,0.1,1,10,100 along with the results from a sudden
quench. The results from those cases where the bias is turned
on in a finite time tm exhibit no observable deviation from
the results from the case of a sudden quench. We choose
tm = 10t0 and N = 256 with Np = 128, but the conclusion
holds for other parameters. Thus in the following we focus
on the sudden-quench case when we compare the MCF and
analytical formulas.

VII. COMPARISONS

Figure 7 shows the current, entanglement entropy, and
number fluctuations of the weak-link case for selected values
of t̄ ′/t̄ . The currents clearly exhibit a quasi-steady state after a
short transient time. We emphasize again that the steady-state
current results from the quantum dynamics of the system and is
not assumed a priori. The corresponding steady-state currents
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FIG. 7. (Color online) (a) Current, (b) entanglement entropy, and
(c) particle number fluctuations of the weak-link case with t̄ ′/t̄ =
1,0.5,0.1 (labeled next to the corresponding curve). The dashed lines
in (a) show the current predicted by the Landauer formula, Eq. (1),
with the corresponding parameters. The arrows point to the transient
regime where the current fluctuates in (a) and the entropy deviates
from the linear dependence in (b) for the case with t̄ ′/t̄ = 0.5. The
inset shows I for N = 256,512,1024 (from the largest oscillation
amplitude to the smallest one) and the current predicted by Eq. (1)
(dashed line) for t̄ ′/t̄ = 0.5. Here μB = 0.2t̄ and N = 512.

calculated from the Landauer formula, Eq. (1), are plotted
on the same figure. The results from our simulations agree
well with the predictions from the Landauer formula. This
agreement is in line with the observation that as the system
approaches the thermodynamic limit (N → ∞ with finite
filling), the microcanonical setup becomes indistinguishable
from that in the Landauer formalism. For the case t̄ ′ = t̄ ,
we recover the quantized conductance, G0 = I/μB = 2e2/h

(spin included). As expected, in the presence of a barrier (t̄ ′<t̄),
the conductance is smaller than the quantized conductance.
The suppression of the current by a weak central link was
also shown in Ref. [44]. We also test finite-size effects by
comparing the currents from N = 256,512,1024 with the
prediction from the Landauer formula in the inset of Fig. 7.
One can see that while the oscillation amplitude decreases
with increasing system size, the average currents of the three
different sizes all agree well with the analytical result. For the
central-site case we found similar results.

FIG. 8. (Color online) Comparison of the slope of s(t) from
Eq. (15) (red) and simulations (symbols). Here the results for μB/t̄ =
0.1 are represented by the dashed line, circles (weak link), and
diamonds (central site) while those for μB/t̄ = 0.2 are represented
by the solid line, triangles (weak link), and squares (central site).
We choose N = 512 and T = T (E = 0). The thin red solid and
dashed lines show the results for a Gaussian distribution, Eq. (27), for
μB/t̄ = 0.2 and 0.1. (Inset) The slopes (in units of t−1

0 ) from different
system sizes N = 256,512,1024,2048 showing the convergence to
the semiclassical value for t̄ ′/t̄ = 0.5 (solid line).

When the link strength t̄ ′ or the central-site energy EC is
tuned, the transmission coefficient T (E) changes accordingly.
Figure 3 compares the quasi-steady-state currents from the
Landauer formula (black line) and from microcanonical
simulations of the weak-link case (red circles) and the central-
site case (green squares) as a function of the transmission
coefficient T = T (E = 0). The three results agree well and
this supports the expectation that the Landauer formalism
provides reasonable predictions. However, we will see that
the agreement does not hold when we study the distributions
on the two sides of the junction.

The entanglement entropy is expected to be linear in time
and our results support this claim. We found that the slope
of 
s = s − s(μB = 0) is proportional to μB as predicted in
Eq. (15). For different values of t̄ ′/t̄ , we test the predictions
from the two formulas. From Fig. 2 we find that in the range
−μB/2 � E � μB/2 the variation of T (E) is within 3% for
all cases we studied so we take T (E = 0) as the transmission
coefficient in our evaluation of Eq. (15).

The slope of the entanglement entropy from microcanonical
formalism and the predictions from Eq. (15) are shown in Fig. 8
for μB/t̄ = 0.1 and 0.2. One can see that our results agree
well with Eq. (15) for all values of T and this implies that
the distribution of tunneling particles may be approximated by
a binomial form as assumed in Ref. [18]. In the derivation
of Eq. (15) and in our simulation, fermions of different
spins tunnel independently and do not generate spin-entangled
states. The entanglement entropy comes from the correlation
of partially tunneled and partially reflected wave functions of
particles.

We notice that the transient time, which is defined as the
initial time interval during which the system has not reached a
quasi-steady state, seems to differ in I (t) and s(t) (as illustrated
in Fig. 7). During the transient time, the currents fluctuate
violently while the entropy exhibits a downward bending.
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From our simulations we found that the transient time for
s(t) is three times larger than that for I (t) and this relation
seems to be insensitive to the system size.

To investigate how FCS depends on the underlying
probability distribution, we study the behavior of Eq. (15)
when a Gaussian (continuous) distribution is implemented.
To make connections with the original binomial distri-
bution, we choose the mean m = NT and the variance
σ 2 = NT (1 − T ) to match those of the binomial distri-
bution. The CF is χ (λ) = exp(imλ − 1

2σ 2λ2). A change
of variable z = 1/(eiλ − 1) gives χ (z) = exp(μ log(1 − 1

z
) +

1
2σ 2[log(1 − 1

z
)]2). One then finds Im∂z log χ (z) = Im[ m

z2−z
+

σ 2

z2−z
log(1 − 1

z
)]. When one changes z to z − i0+ and uses the

formula 1/(x − i0+) = P (1/x) + iπδ(x), the imaginary part
of 1/(z2 − z) does not contribute to the integral of s because
the delta function δ(z2 − z) can only be satisfied at z = 0,1 but
those points do not have finite s. The only contribution in the
spectral weight is thus μ(z) = 1

π
σ 2

z2−z
Im[log(1 − 1

z−i0+ )]. One
can show that Im[log(1 − 1

z−i0+ )] = arg[(z − 1)/z] = −π (the
choice of the sign will be clear in a moment) for 0 < z < 1.
Thus the weight is μ(z) = − σ 2

z2−z
which is positive for 0 < z <

1. From s = − ∫ 1
0 dzμ(z)[z log z + (1 − z) log(1 − z)] [18]

one gets s = ασ 2 = α(2μB/h)T (1 − T )
t . Thus,


s


t
= α

(
2μB

h

)
T (1 − T ), (27)

where α ≈ 3.3 is a numerical factor. In Fig. 8 we show (in
thin red lines) its values. It is clear that the data from the
microcanonical simulations can distinguish these distributions.

As the system size increases, the small oscillation on top of
the linear increase of the entanglement entropy decreases. We
found that this reduces the difference between the slope from
fitting the results from the MCF and the slope predicted by the
semiclassical FCS formalism. In the inset of Fig. 8 we show
the slope from the MCF for N = 256,512,1024,2048 with
half filling. One can see that as N increases the agreement
improves. However, optical lattices in real experiments are of
limited sizes so one may expect observable finite-size effects
in experimental results.

Next we extract the slopes of 
N2
L and compare the results

with the slopes predicted from the semiclassical formula of
the second cumulant, Eq. (16), in Fig. 9. The slopes agree
reasonably well, which implies that quantum corrections to
the semiclassical formula are insignificant. Moreover, we have
compared the third and fourth moments with the quantum-
mechanical fluctuations of the corresponding order. The results
from microcanonical simulations show observable deviations
from those from semiclassical FCS in the fourth order but not
in the third order. The slight difference between our results and
the results from semiclassical FCS in Fig. 9 is due to finite-size
effects. We have checked our results for larger system sizes
and the result converges to the FCS prediction, as shown in the
inset of Fig. 9.

So far the MCF agree reasonably with Landauer formalism
and FCS. Now we will show several interesting phenomena
associated with the finite size and conservation laws of
isolated systems such as cold atoms. We first study the
particle distribution functions on the left and the right sides.
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FIG. 9. (Color online) Comparison of the slopes (in units of t−1
0 )

of 
N 2
L (symbols) and C2 from Eq. (16) (curves). The circles (weak

link), diamonds (central site), and dashed line correspond to μB/t̄ =
0.1 while the triangles (weak link), squares (central site), and solid
line correspond to μB/t̄ = 0.2. Here N = 512 with half filling. (Inset)
The slope (in units of t−1

0 ) of 
N 2
L for N = 256,512,1024,2048 at

half filling with t̄ ′/t̄ = 0.5. The dashed line shows the result from
Eq. (16).

This can be done by first projecting the correlation matrix
to the left (right) half uniform lattice and obtaining ML =
PLCPL and MR = PRCPR . Next we find the eigenvalues
and the corresponding unitary transformations of HL and
HR (with the biases on) so that HL/R = UL/RDL/RU

†
L/R ,

where DL,R = diag(εL/R,1, · · · ,εL/R,N/2). Then we construct
the correlation matrix in energy space and get D̃

L/R

qq ′ =∑
i,j∈L/R(U †

L/R)qi(UL/R)jq ′ (ML/R)ij . For each eigenvalue
εL/R,q , the occupation number is given by nL/R(εL/R,q) =
D̃

L/R
qq . In Fig. 10 we show the particle distributions for the

FIG. 10. (Color online) The distribution function of the weak-
link case with μB = 0.2t̄ and t̄ ′ = 0.5t̄ (left column) and t̄ (right
column). From top to bottom, t = t0, 100t0, and 200t0. Here, N = 512
(with the lattice initially half filled) and the quasi-steady state current
persists to 240t0.
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FIG. 11. (Color online) The distribution function of the central-
site case with μB = 0.2t̄ and Ec = 2t̄ (left column) and 0 (right
column). From top to bottom, t = t0, 100t0, and 200t0. Here, N = 512
and the quasi-steady-state current persists to t = 240t0.

weak-link case with t̄ ′ = 0.5t̄ and t̄ ′ = t̄ at t = t0, 100t0, and
200t0 for N = 512 with the system initially half filled and
μB = 0.2t̄ . The particle distributions for the central-site case
with similar parameters are shown in Fig. 11.

Clearly, the particle distributions on both sides vary dynami-
cally but they evolve in a coordinated fashion so that the current
across the junction remains constant for a long period of time.
This is different from the picture behind the Landauer formula.
In the Landauer formula the distributions on the left (right) half
lattice are fixed at fL (fR) and a constant tunneling constant T

determines the rate at which particles move across the junction.
On the other hand, for a finite system, the particle distributions
must evolve with time. If Eq. (1) is naively used in this case,
one may expect that the current decays with time because the
difference between the distributions, fL(E) − fR(E), should
be a decreasing function when particles are flowing from the
left to the right. In contrast, a plateau in the current emerges
in the full quantum dynamics. Even more surprisingly, there
exists a time interval when a QSSC still flows from left to right,
yet the right lattice has more particles, as shown in the bottom
right panels of both Figs. 10 and 11 (for t = 200t0) [45]. This
highlights that this is a highly correlated state that allows the
QSSC to persist. We will see in the next section this is due to
causality and the finite speed of propagation of information,
and thus is analogous to the light cone in special relativity.

There are recent proposals for designing batteries for
atomtronic devices [8]. However, an important message from
our study is that an isolated quantum system can maintain
a quasi-steady-state current in many cases. The quasi-steady
state, as we demonstrated, is maintained by internal dynamics
so a battery may not be the only way for generating a steady
current in atomtronic devices, one could instead engineer an
appropriate initial state that will induce a QSSC.

VIII. LIGHT CONE OF WAVE PROPAGATION

In the last section, we saw that a QSSC can continue to flow
even when the particle imbalance would indicate otherwise.
This effect is due to the finite speed of information. Recent
experimental studies [3,46] have shown that the density profile
exhibits a “light cone” as an atomic cloud expands, and there
are ongoing theoretical studies to support this fact [47]. We can
see this effect within the MCF (one of the many advantages
of this formalism). We monitor the real-time dynamics of the
density and current profiles for noninteracting fermions in a
uniform lattice driven out of equilibrium by (1) a step-function
potential as shown in Fig. 1, and (2) a sudden removal of atoms
on the right half lattice as discussed in Ref. [23]. The time evo-
lution of the first case is shown in Fig. 12 and that of the second
case is shown in Fig. 13. In both cases one can see clearly a
“light cone” within which the motion of atoms are confined.
The propagation speed is limited by the Fermi velocity, which
for filling f is vF = 2 sin(f π )/t0. For N = 512 at half filling
(Np = 256), it takes about 128t0 for the wave front to reach
the boundary and reflect back. Around 256t0 the two wave
fronts propagating in the opposite directions meet again in
the middle. That is when the current stops showing the quasi-
steady-state behavior. This applies to both cases, as shown in
Figs. 12(c) and 12(d) and Figs. 13(c) and 13(d). This explains
the paradoxical behavior of the QSSC flowing counter to
the particle imbalance. This happens because the information
regarding the population imbalance still has not been carried
to the junction region where the current is being monitored.

For the quarter filling (Np = 128), if the wave front
propagates at the speed of the corresponding Fermi velocity√

2/t0, it takes about 181t0 for the wave front to reach the
boundary and the two wave fronts meet again at around 362t0.
Although the main body of the wave propagates at this speed,
there are “leaks” of the wave which propagate at speeds higher
than

√
2/t0 but they are limited by the maximal Fermi velocity

2/t0, as shown in Figs. 12 and 13. This “leaking” behavior is
more prominent for the case of a sudden removal of half of the
particles at higher filling. As shown in Figs. 13(e) and 13(f),
for initial (3/4) filling there is significant fraction of the wave
propagation at 2/t0. For the step-function bias case [Figs. 12(e)
and 12(f)], the main wave propagates at

√
2/t0 and again the

leak propagates at higher speed (limited by 2/t0). We also
found that adding a weak central link or a central site with
different onsite energy only decreases the magnitude of the
current, but the speed of wave-front propagation remains the
same for the same initial filling.

IX. KUBO FORMALISM

In order to connect the microcanonical and Landauer
approaches, we apply leading order perturbation theory on
finite systems by way of the Kubo formula [11,48,49],

〈A(t)〉 = 〈A〉0 − i

∫ t

0
dt ′〈[Â(t),Ĥ ′(t ′)]〉, (28)

for the observable A. Here, Ô = eıH0tOe−ıH0t indicates an
operator in the interaction picture, H ′ is the perturbing
Hamiltonian, and 〈O〉0 indicates an average with respect
to the initial state. For all practical purposes, here we use
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FIG. 12. (Color online) The density profiles (top row) and current profiles (bottom row) for a uniform chain driven out of equilibrium by
a step-function bias μB = 0.2t̄ . Here N = 512 with Np = 128 [(a) and (d)], Np = 256 [(b) and (e)], and Np = 384 [(c) and (f)]. The Fermi
velocity for half filling is (2/t0) and that for (1/4) or (3/4) filling is (

√
2/t0).

the wave functions of finite-size systems without taking
the thermodynamic limit commonly employed in solid-state
systems. We will consider a one-dimensional lattice set out of
equilibrium by connecting two initially disconnected halves
with a weak link or by the application of a bias to an initially
connected system, as shown in Fig. 1.

A. Connecting the L and R lattices

The initial Hamiltonian is

H0 = HL + HR,

where

HL = −
∑
〈i,j〉

t̄ c
†
i cj + μL

∑
i

c
†
i ci

and

HR = −
∑
〈i,j〉

t̄d
†
i dj − μR

∑
i

d
†
i di .

The left and the right lattices are both finite lattices of
length N with nonperiodic (“open”) boundary conditions.
We consider the ground state of HL and HR fixed at half
filling—the bias can be thought of as added simultaneously

FIG. 13. (Color online) The density profiles (top row) and current profiles (bottom row) for a uniform chain driven out of equilibrium by
suddenly blowing away particles on the right half. Here N = 512 with initial particle number Np = 128 for (a) and (d), Np = 256 for (b) and
(e), and Np = 384 for (c) and (f).
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with the connection of the two lattices. The diagonalization of
the left lattice is performed by cj = ∑

k Ujkak with Ujk =√
2/(N + 1) sin[jkπ/(N + 1)] and k = 1, . . . , N , yield-

ing HL = ∑
k εL

k a
†
kak and εL

k = −2t̄ cos[kπ/(N + 1)] + μL.
Similarly for the right lattice, using dj = ∑

k Ujkbk gives
HR = ∑

k εR
k b

†
kbk and εR

k = −2t̄ cos[kπ/(N + 1)] + μR .
At t = 0, the lattices are connected by the perturbing

Hamiltonian,

H ′ = gt̄(c†1d1 + d
†
1c1),

where g = t̄ ′/t̄ . Note that the numbering of the sites in both
lattices starts from the interface sites. The current is the
quantity of interest, hence we will take

A = gt̄c
†
1d1,

where A gives the hopping between the two halves of the
lattice, i.e., c1 acts on the interface site on the left lattice and
d1 on the interface site of the right lattice. This will give the
current through I (t) = −2Im〈A(t)〉.

The interaction picture operators are

Â(t) = gt̄
∑
k,k′

U
†
k1U1k′eı(εL

k −εR
k′ )t a

†
kbk′ ,

and

Ĥ ′(t ′) = (Â(t ′) + Â†(t ′)).

Putting these into Eq. (28) and using that 〈A〉0 = 0 for two
initially disconnected lattices, we obtain

〈A(t)〉 = g2 t̄2
∑
k,k′

|Uk1|2|U1k′ |2 nk − nk′

εL
k − εR

k′
(1 − eı(εL

k −εR
k′ )t ).

The current is then

I (t) = −2Im〈A(t)〉
= 2g2 t̄2

∑
k,k′

|Uk1|2|U1k′ |2 nk − nk′

εL
k − εR

k′
sin

[(
εL
k − εR

k′
)
t
]
.

(29)

When the L and R lattices are half filled, this double sum will
be nonzero when either k � N/2, k′ > N/2 or k > N/2, k′ �
N/2.

To simplify the expressions and show the correspondence
with Landauer, we take the semi-infinite limit for the left and
right lattices obtaining

I (t) = 8g2 t̄2

π2

∫ π

0
dk

∫ π

0
dk′ sin2 k sin2 k′

× nk − nk′

εk − εk′ + μB

sin [t (εk − εk′ + μB)] ,

where εk = −2t̄ cos k and μB = μL − μR . At this point, we
have made no assumption about the strength of the bias, the
filling, or the temperature. We will now restrict ourselves to
the case of half filling and zero temperature.

The two contributions to this expression give the forward
and backward currents, integrating over energy instead of wave

vector,

I→(t) = 2g2 t̄

π2

∫ 0

−2
dε

∫ 2

0
dε′

(
1 − ε2

4

)1/2 (
1 − ε′2

4

)1/2

× sin[t(ε − ε′ + μb)/t0]

ε − ε′ + μb

,

and

I←(t) = 2g2 t̄

π2

∫ 2

0
dε

∫ 0

−2
dε′

(
1 − ε2

4

)1/2 (
1 − ε′2

4

)1/2

× sin[t(ε − ε′ + μb)/t0]

ε − ε′ + μb

.

Here, μb = μB/t̄ . As t → ∞, the fast oscillating function
sin(tx)/πx enforces ε′ = ε + μb. This latter equality cannot
be satisfied in the backward current as ε is positive and μb is
also positive, but ε′ is negative. Thus, only the forward current
remains, giving

I = g2 t̄2

π

∫ μb/2

−μb/2
dεḡLḡR

in the steady state and including the factor of two for
spin. Here, ḡL(R) =

√
4 − (ε ∓ μb/2)2 and the bias is applied

symmetrically. The result is insensitive, though, to how the
bias is applied—the left lattice can be shifted by μB and the
right lattice by 0, or the left by μB/2 and the right by −μB/2.
This expression is valid for arbitrary bias and agrees with the
Landauer expression, Eq. (4), to leading order in g. For small
bias, one obtains

I � 4g2 t̄

π
μB.

Figure 14 shows the agreement of this expression with the
exact microcanonical expression for finite-size systems.

This Kubo approach is firmly rooted in the microcanonical
picture—we have a finite, closed system (the semi-infinite
limit is taken only for convenience) set out of equilibrium. The

FIG. 14. (Color online) Current versus time for connection-
induced transport. The Kubo result (blue crosses) compares very
well with the exact microcanonical method (red, dashed line), with
both approaching the steady-state current (green, dashed line) for long
times. Here, the lattice is of length 1600 sites, the bias is μB/t̄ = 1/10,
and the strength of the weak link is g = 1/100.
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resulting expressions separate out the short time behavior—
due to forward and backward fluctuations at all energy scales—
and the long time behavior, the QSSC, that emerges from just
the forward current.

B. Applied bias across the L and R lattices

Let us now consider an initial Hamiltonian for a connected,
homogeneous lattice of length 2N ,

H0 = −
∑
〈i,j〉

t̄ c
†
i cj .

We consider the ground state of H0 fixed at half fill-
ing. The diagonalization is the same as above except
with a lattice of length 2N , cj = ∑

k Ujkak with Ujk =√
2/(2N + 1) sin(jkπ/(2N + 1)) and k = 1, . . . , 2N , yield-

ing H0 = ∑
k εka

†
kak and εk = −2t̄ cos(kπ/(2N + 1)).

At t = 0, the lattices are perturbed by the Hamiltonian,

H ′ = μB

2

∑
i∈L

c
†
i ci − μB

2

∑
i∈R

c
†
i ci ,

which applies the step potential bias as shown in Fig. 1. The
strength of the perturbation is the bias μB . The current between
the two halves is of interest, and therefore we choose

A = t̄ c
†
NcN+1.

The interaction picture operator is

Â(t) =
∑
k,k′

U
†
kNUN+1k′eı(εk−εk′ )t t̄a

†
kak′ .

After some work, one finds that the current is

I (t) = −2Im〈A(t)〉

= 2μBt̄

(2N + 1)2

∑
k Even,

k′ Odd

Fkk′
nk − nk′

εk − εk′
sin [t (εk − εk′)] ,

FIG. 15. (Color online) Current versus time for bias-induced
transport. The Kubo result (blue crosses) compares very well with
the exact microcanonical method (red, dashed line), with both
approaching the steady-state current (green, dashed line) for long
times. Here, the lattice is of length 1600 sites; the bias is μB/t̄ =
1/100.

where

Fkk′ = 2t̄ + 4t̄2 − εkεk′

εk − εk′
.

As t → ∞, one can compute the steady-state current, I �
μBt̄/π , which includes a factor of two for spins. This agrees
with the Landauer expression, Eq. (3), expanded to the leading
order of μB . Figure 15 shows the agreement of this expres-
sion with the exact microcanonical expression for finite-size
systems. One may build connections between the Landauer
formalism and the MCF via the use of nonequilibrium Green’s
functions [50]. The Kubo approach here, however, gives
explicit expressions for the effect of the reservoirs for discrete
systems and thus explicitly connects closed, finite systems and
their thermodynamic limit.

X. CONCLUSION

In summary, we have discussed different theoretical
viewpoints for quantum transport phenomena that may be
studied in ultracold atoms. In particular, we have compared
the current, entanglement entropy, and number fluctuations
from the Landauer approach, semiclassical FCS, and the
microcanonical formalism. In our study of two finite 1D
lattices bridged by a junction, we found a quasi-steady-state
current from the quantum dynamics in the microcanonical
simulations. The magnitude of this quasi-steady-state current
agrees quantitatively with the value predicted by the Landauer
approach. The underlying mechanisms, nevertheless, have
been shown to be very different when the distributions of the
two sides are analyzed. The distributions evolve in time and
steadily deviate from Fermi-Dirac distributions even while the
quasi-steady-state current is maintained.

Our work points out several key issues when applying
different formalisms to closed quantum systems such as
ultracold atoms in optical lattices. Of particular importance
is the confirmation, using the microcanonical approach, that
a quasi-steady-state fermionic current can be established in
a 1D closed system for a finite period of time without the
need of inelastic effects or interaction effects beyond mean
field [20]. The magnitude of this noninteracting quasi-steady-
state current is independent of the way the bias is switched on.
This also hints at the fact that the Landauer formalism may
not be the best suited for the study of transport properties of
these finite closed systems, even though the average current
that it predicts is correct for long times. This is because, in
the case of elastic scattering, the current is dominated by local
properties at the junction. On the other hand, other quantities
of interest, such as the occupation of particles—whether at a
quasi-steady state or not—are very sensitive to the full spatial
extent of the wave functions.

The entanglement entropy from our simulations of the
full quantum dynamics agrees with the formula derived from
semiclassical FCS with a binomial distribution, which raises
the question of how the wave nature of the transmitted particles
can be well approximated by such a distribution. We also found
that quantum corrections are not significant in the equal-time
number fluctuations of these noninteracting systems. On the
one hand, this supports the use of a semiclassical approach
in studying certain transport phenomena. On the other hand,
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finding transport coefficients that are sensitive to quantum
corrections is an interesting future direction.

Extending those comparisons to higher dimensions or in the
presence of interactions beyond mean field approximations
could be very challenging, but they could lead to a deeper
understanding of transport phenomena in closed quantum
systems. We emphasize that these issues, such as the dy-
namics and feedback of reservoirs, quantum correlations, and
matter-wave propagation, should be carefully investigated in

more complex situations as we did here for noninteracting
systems.
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