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Non-local quantum superpositions of
topological defects
Jacek Dziarmaga1,2, Wojciech H. Zurek1* and Michael Zwolak1,3

Topological defects, such as monopoles, vortex lines or
domain walls, mark locations where disparate choices of a
broken-symmetry vacuum elsewhere in the system lead to
irreconcilable differences1,2. They are energetically costly (the
energy density in their core reaches that of the prior symmetric
vacuum) but topologically stable (the whole manifold would
have to be rearranged to get rid of the defect). Here we show
how, in a paradigmatic model of a quantum phase transition,
a topological defect can be put in a non-local superposition,
so that—in a region large compared with the size of its
core—the order parameter of the system is ’undecided’ by
being in a quantum superposition of conflicting choices of the
broken symmetry. We dub such a topological Schrödinger-cat
state a ‘Schrödinger kink’, and devise a version of a double-
slit experiment suitable for topological defects to describe
one possible manifestation of the phenomenon. Coherence
detectable in such experiments will be suppressed as a
consequence of interaction with the environment. We analyse
the environment-induced decoherence and discuss its role in
symmetry breaking.

Topological defects are the epitome of locality. An example of
a defect occurs in the quantum Ising model where a lattice of
spins interact ferromagnetically with their nearest neighbours, that
is, the Hamiltonian contains an interaction of the form −σ z

nσ
z
n+1

for the nth spin on the lattice. The entire collection of spins
achieves its lowest energy when they are all aligned. However,
there are two choices for this lowest energy state, | ··· ↑↑↑↑ ···〉
or |··· ↓↓↓↓ ···〉. Both are energetically identical but each of them
breaks the symmetry of the Hamiltonian, which has no preference
between ‘up’ and ‘down’.

A configuration that includes topological defects could arise, for
example, in a driven phase transition, that is, ‘a quench’. In the Ising
model, a quench can be induced when the transverse field strength
g is changed in the Hamiltonian

H =−
∑
n

(
gσ x

n +σ
z
nσ

z
n+1

)
(1)

When the external field is strong enough (g� 1), it ‘wins’ and all
spins align with σ x . A decrease in g, however, will lead to a phase
transition at g=1 with the symmetry breaking term−σ z

nσ
z
n+1 trying

to align all the spins in their z direction.
The choice of whether the spins will point up or down is made

locally. As a result of causality and the finite speed at which signals
propagate, the size of these domains will be determined by the
rate of change of g (refs 3–8). This will lead to configurations,
such as | ··· ↑↑↓↓ ···〉, where the topological defect marks the
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location of a ‘switch’ from one broken-symmetry ground state to
the other. In this one-dimensional example, the defect is a kink (a
domainwall), but, in a sense, all the topological defects (monopoles,
vortex lines, and so on) that exist in higher dimensions ‘look the
same’. A discussion of the consequences of this process for the
post-transition state is beyond the scope of this work (but see,
for example, refs 9–11). We only note that the density of the
resulting kinks will be finite.

The quantum Ising model quenches a state according to
Hamiltonian (1) so, when g is changed in time, superpositions
of different locations of a kink (for example, α|··· ↑↑↓↓↓↓ ···〉+
β|··· ↑↑↑↓↓↓ ···〉+γ |··· ↑↑↑↑↓↓ ···〉) are allowed, and, indeed,
inevitable10,11. Spreading of a localized kink will come about as a
consequence of the kinetic term, gσ x

n , in equation (1). A convenient
setting to investigate its effect is offered by a slight modification
of the original Hamiltonian, so that the Ising interaction between
a selected pair of sites, n0,n0+ 1, is −(1−w)σ z

n0σ
z
n0+1 with w > 0,

which differs somewhat from the uniform coupling of −σ z
nσ

z
n+1.

This difference means that the kink is energetically less expensive
when localized between those two selected sites. The decrease in the
coupling constant byw creates a local ‘potential well’ that binds this
kink. On the other hand, the kinetic term will delocalize the kink so
that the quantumwavefunction of the kinkwill have the form

ψn∝ e−γ0|n−n0| (2)

where ψn is the amplitude for the kink to be on the link n
between sites n and n + 1, n0 is the location of the potential
well, and γ0 = sinh−1(w/g) is the inverse decay length of the
wavepacket. One can imagine measurements that will reveal such a
non-local wavepacket—a kink in a superposition ofmany locations.
We emphasize that the half-width of this wavepacket is not the
size of the kink: the kink is a local object with a size given
by the healing length that—in the quantum Ising model far
away from the critical point—is given by the lattice spacing of
the neighbouring spins. The spread in equation (2) represents a
superposition of many possible locations of the kink, which is
bound to the weak link between sites n0 and n0+1, but nevertheless
has some spatial extent.

A tell-tale signature of quantum coherence is an interference
pattern. To see whether a defect can interfere with itself, we devise
an analogue of the double-slit experiment (Fig. 1). To this end,
the local value of the Ising coupling can be depressed by w at two
locations separated by L sites. The two links that bind the same kink
initially are analogues of the slits in the double-slit experiment. To
achieve a situation where the kink is ‘both here and there’, one can

NATURE PHYSICS | VOL 8 | JANUARY 2012 | www.nature.com/naturephysics 49
© 2012 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nphys2156
mailto:whzurek@gmail.com
http://www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS2156

L

Coherent

Incoherent

a

b

Figure 1 | A Schrödinger kink in a quantum Ising chain. a, A topological
defect in a non-local superposition. A double-well potential is used to
create a superposition of a topological defect, such as a Schrödinger kink
described by a wavefunction representing a superposition of two locations
(here we plot the corresponding probability distribution in space). The
analogy with the humane version of the Schrödinger cat experiment is
obvious. b, The analogue double-slit experiment. To carry out the
double-slit experiment, the two potential wells are eliminated, allowing the
defect to move. In isolation, the two wavepackets emerging from the ‘slits’
interfere, creating fringes of high and low probability for the location of the
kink. However, when the system interacts with the environment, such a
superposition will decohere at a rate proportional to the distance L—the
unzipped part of the chain shown in a, which corresponds to the size of the
Schrödinger kink—resulting in a classical distribution for the defect.

start it on one of the two binding sites and evolve so that tunnelling
of the kink will result in the state

|··· ↑↑↑

L︷ ︸︸ ︷
↓↓ ··· ↓↓↓↓↓ ···〉+|··· ↑↑↑↑↑ ··· ↑↑︸ ︷︷ ︸

L

↓↓↓ ···〉 (3)

where we have ignored the spread of the wavepacket for simplicity.
This is also illustrated in Fig. 1a, where the superposition of the kink
forms a ‘scar’ in the orientation of the spins, ‘unzipping’ the L-sized
region of the spin chain in Fig. 1.

This is not the only way to create a ‘Schrödinger kink’ state.
As we shall see later, one can also start with a kink localized state
on a single ‘weak link’. If the kink is released symmetrically, it will
travel both left and right.

The double-slit experiment can be now conducted starting
from this initial configuration by eliminating the two weak links.
The kink is then no longer bound by the ‘double-well’ potential:
the Schrödinger kink propagates in accord with the Schrödinger
equation and the two components of the wavepacket run into each

other. If coherence is properly preserved between them, this will
lead to an interference pattern.

Preserving phase coherence is crucial if the resulting interference
pattern is to be seen in experiments. Trivial reasons for loss of
coherence—such as an imprecise implementation of the two weak
links—will have to be eliminated.However, the fundamental reason
for the loss of coherence is environment-induced decoherence12–17.
It is important to understand its causes and its nature, as it is
not just an impediment to creating the superpositions described
above, but the prevailing reason why the topological defects we
encounter are always localized.

Decoherence is caused by the interaction of individual spins
with the environment E . The pointer states18,19 entangle least
with the environment. They are selected with the help of the
interaction Hamiltonian. For instance, an individual spin |↑〉
can leave a different imprint on E than the spin |↓〉, that is,
(α|↑〉 + β|↓〉)|E0〉 → α|↑〉|E↑〉 + β|↓〉|E↓〉. The overlap 〈E↑|E↓〉
determines the decoherence factor, with 〈E↑|E↓〉= 0 corresponding
to the complete loss of coherence. The decoherence factor controls
the size of the off-diagonal terms in the density matrix. When they
disappear, quantum coherence between |↑〉 and |↓〉 is lost12–14,16.

Returning to our Schrödinger kink, we note that when two
locations are separated by L spins, equation (3), the decoherence
process will take place simultaneously in all L spins. Assuming
that each spin leaves its own imprint will lead to a decoherence
factor that scales as 〈E↑|E↓〉L, where L is the number of unzipped
spins—the spatial extent of the superposition of the ‘Schrödinger
kink’. This exponential scaling with the extent of the superposition
is intuitively obvious: we do not have to assume any specific
model for the decoherence. All that is needed is the familiar
assumption (see, for example, modelling of errors in quantum
error correction17) that individual spins (or local regions) affect the
environment individually.

This assumption suffices to show that the decoherence rate
is proportional to the ‘size’, L, of the superposition. That is,
decoherence time is τdec ∼ 1/L. This conclusion is confirmed
by calculations employing a master equation (see Supplementary
Information). One can generalize this intuition to superpositions
of topological defects in higher dimensions by noting that it
is the volume of the system—the size of the domain that is
suspended in indecision between two broken symmetry vacua—
that is responsible for the decoherence rate.

We now return to the Ising model. In the absence of
decoherence, a well-defined interference pattern develops when
the two initial components of the wavepacket run into each
other (Fig. 2). As the distance, L, between these two components
is increased, more fringes become visible (that is, decreasing L
decreases the magnitude of the outer fringes), as seen by Fig. 2b,c.
This is demonstrated explicitly by the formof the fringes,

pn(t )= |ψn(t )|2∝
1+cos (n−n0−L/2)L2gt[
1+ (n−n0−L/2)2

(2γ0gt )2

]2 (4)

This interference pattern is analogous to the one observed in the
double-slit experiment. In the double-slit experiment the distance
between fringes is λD/L, where L is the distance between the slits,
λ is the wavelength of light, and D is the distance to the screen.
For kinks, the distance travelled is D = υk t ≈ 2gkt = 2g(2π/λ)t ,
where υk = dω/dk ≈ 2gk is the group velocity of the kink for
slow kinks that are generated when w � 1, as we assume in
deriving equation (4) (the figures use υk = 2gsin k, demonstrating
that this assumption is sound). This linear approximation yields
the fringe distance for kink interference λD/L= 4πgt/L, as given
in equation (4). The height of the second peak relative to the
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Figure 2 | Interference patterns after a Schrödinger kink is released. a, Time evolution of the Schrödinger kink for L= 50 and 2w=0.3g results in an
interference pattern (highlighted in red at the final time). b, Interference pattern in the long time limit (gt= 1,000) for L= 100 and 2w=0.3g.
c, Interference pattern in the long time limit (gt= 1,000) for L= 50 and 2w=0.3g. In b and c, the exact data is shown as black crosses and equation (4) is
shown as the blue line. As the distance between the two ‘slits’ where the kink is trapped decreases so does the number of interference fringes.

first is 1/[1 + 4π2/L2γ 2
0 ]

2. In effect, the linear approximation
of υk = 2g sin k entitles one to think of kinks in a double-slit
experiment as onewould think of, say, electrons or neutrons.

Decoherence suppresses interference. Figure 3a shows the
evolution of the kink probability density (that determines the
probability of finding a kink at a certain location) under strong
decoherence. In the presence of decoherence it evolves into
a Gaussian form seen in Fig. 3b. Even weak decoherence will
attenuate interference. The decoherence time depends on L:
coherence disappears exponentially fast in L, the separation between
components of the wavepacket. The evolution of the superposition
under weak decoherence is shown in Fig. 3c.

The double-slit experiment for kinks we have just discussed has
the advantage of a straightforward interpretation. The use of the
coherent bi-local Schrödinger kink that is relatively weakly bound
to the two sites allows one to linearize the dispersion relation and
use υk = 2gk for the kink velocity. This leads in turn to the simple
form of the interference pattern, equation (4).

However, this ease of interpretation may come at the price of
difficult implementation. In particular, preparing the initial bilocal
kink wavepacket and maintaining coherence between its two pieces
will be a challenge. A different version of Schrödinger kink that
should be easier to implement is therefore illustrated in Fig. 4.
Here the kink is initially bound to a specific link along the Ising
chain. This kink trap is instantaneously turned off, which results
in a coherent spreading of the wavepacket with a superposition of
velocities and in both directions on the Ising chain.

As before, we are not satisfied with just creating a Schrödinger
kink. One should confirm that quantum coherence is present. In
Fig. 4 this is accomplished by reflecting the spreading wavepacket
from the ends of the Ising chain. The time-evolving interference
pattern is now more complicated than before, but—in the absence
of decoherence—it clearly exhibits quantum coherence that can be
predicted by suitably ‘folding’ the kink’s wavefunction upon itself.
Decoherence (as expected) suppresses interference fringes over
time: as with double-slit analogue, the decoherence strength will
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Figure 3 | A Schrödinger kink evolved in the presence of decoherence. a, Time evolution for strong decoherence (0= g/2), L= 50, and 2w=0.3g.
b, Under strong decoherence, the Schrödinger kink evolves into a Gaussian mixture of locations (highlighted in red in a) at a later time, gt= 100 (the black
crosses are the exact data and the blue curve is the solution to the diffusion equation). c, Under weak decoherence (0= g10−3/8), the superposition is still
visible at intermediate times, but the decoherence smoothes out the fringes (the black crosses are the exact data and the blue curve is the pure state
solution convoluted with a Lorentzian).

have to decrease as∼1/L, where L is the support of the wavepacket,
if coherence—and, hence, interference—is to survive.

The interference pattern in Fig. 4 bears the imprint of the
dispersion relation on a lattice, ω = −2gcosk: when released, a
tightly bound kink turns into a wavepacket that propagates as a
Bessel function, pn(t ) = |Jn(2gt )|2. Our kinks of both Fig. 4 and
especially of Fig. 2 are relatively weakly bound. Therefore, the
Bessel oscillation is suppressed—smoothed out by the non-local
nature of the wavepacket that eliminates large k contributions (see
Supplementary Information). Nevertheless, small-scale jaggedness
of the interference pattern visible in Fig. 4 (where w is larger than
in Fig. 2, and, therefore, the kink starts more tightly localized) is a
remnant of these Bessel oscillations.

An obvious application of this observation is the ‘collapse’ of
the superposition of the broken-symmetry vacua after a phase
transition. For example, in the case of the quantum Ising model,
the ferromagnetic ground state is a superposition of |↑ ··· ↑〉 and

|↓ ··· ↓〉. The total number of spins, N , in the Ising chain is the
size of the superposition (for example, |↑ ··· ↑〉 + |↓ ··· ↓〉), but
this symmetric superposition will become a mixture of the two
obvious broken-symmetry states in a very short time, τdec ∼ 1/N .
This is a simple and compelling explanation of the symmetry
breaking that occurs whenever a phase transition starting from a
symmetric vacuum takes place.

The effectiveness of decoherence in localizing topological defects
provides novel insights into the dynamics of symmetry breaking.
A phase transition leads to a single quasi-classical configuration
pockmarked with topological defects: decoherence is the final step
in this process. It leads to the ‘collapse of the wavepacket’ that
initially contains all the possible broken-symmetry configurations.

In the end, only a simple quasi-classical configuration is
in evidence. This is essentially the same course of events that
takes place in quantum measurement20, where breaking of the
unitary symmetry allows for a ‘collapse of the wavepacket’. Recent
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Figure 4 | A single kink evolved on a finite lattice with and without decoherence. Left: Time evolution without decoherence on an L= 201 site lattice with
2w=0.5g. The kink travels outwards on the lattice and after reflecting off the boundaries, it starts to interfere with itself. The leftmost panels show the self
interference at two particular times. Right: The same simulation except in the presence of weak decoherence (0= 3g× 10−6). The kink can still interfere
with itself, but eventually decoherence will suppress the superposition, attenuating the interference pattern. Supplementary Movies show the development
of this interference pattern for different values of w.

progress in emulating quantum Ising and other models21–26 allows
one to hope that experimental tests of ‘Schrödinger kinks’ may
become possible in the near future. Moreover, although models of
superfluids do not allow one to develop and analyse microscopic
quantum theories of double-slit experiments for the relevant
topological defects with the detail we have presented above for
kinks, experiments involving the generation and manipulation of
such defects in, for example, gaseous Bose–Einstein condensates
allow one to hope that testing of ‘topological Schrödinger cats’
involving vortex lines or solitonsmay also be possible.
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Interference fringes

We are interested in the one-kink subspace of the
Hamiltonian (1) spanned by states

|n〉 = | ↑↑ · · · ↑n↓n+1 · · · ↓↓〉, (1)

which have a kink on the link between sites n, n+1. We
can confine to this subspace when g2 � 1 − w and the
magnetic field g is too weak to mix with the subspaces
of 3, 5, .. kinks. When there is only one weak link, then a
stationary state |ψ〉 =

∑
n ψn|n〉 satisfies a Schrödinger

equation

Eψn = −g (ψn+1 + ψn−1)− 2wδn0,nψn. (2)

The magnetic field g provides a hopping term between
nearest neighbor links and the weaker link of strength 1−
w results in a trapping potential of strength 2w localized
on the link n0. This potential has one localized bound
state

ψn = cosh (γ0) e
−γ0|n−n0|, (3)

where γ0 = sinh−1(w/g), with energy E0 =

−2g cosh(γ0) = −2
√
g2 + w2.

When there are two weaker links, n0 and n0 + L, the
Schrödinger equation

Eψn = −g (ψn+1 + ψn−1)−2w (δn0,n + δn0+L,n)ψn (4)

has two bound states

ψ∓
n ∝ e−γ|n−n0| ∓ e−γ|n−n0−L| (5)

with energy E = −2g cosh(γ) and γ being one of the two
solutions of the equation

[
1− g sinh (γ)

w

]2
= e−2γL. (6)

The greater of the two γ’s corresponds to the symmetric
ground state ψ+.

We are interested in the “tight-binding” regime where
the wave packets in equation (5) overlap weakly, i.e.,
e−γL � 1. In this regime γ ≈ γ0 in both bound states
ψ∓, their energies are E ≈ E0 ± ω, respectively, where
the gap

2ω =
4w2

√
g2 + w2

e−2γ0L (7)

is relatively small, 2ω � E0. In this regime, we can
initially prepare the ground state of a single well, equa-
tion (3), which, in the basis (5), reads ψ+ + ψ−. Af-
ter this preparation, we can either switch on the second
well suddenly or turn it on adiabatically. An alternative
preparation is to split a single well adiabatically and sym-
metrically into two wells. With a real-time preparation,
the initial state evolves into ψ+

n e
+iωt +ψ−

n e
−iωt and the

state becomes an equal superposition of the left and right
wells, e−γ0|n−n0| + i e−γ0|n−n0−L| , at the earliest time
ωt = 1

4π. In the adiabatic case, the preparation ends
in the ground state ψ+ of the double well. Since both
cases require roughly the same time � 1/ω, we opt for
the more robust adiabatic preparation of ψ+.

Once the state ψ+ has been prepared, we switch off the
double-well potential at t = 0, w → 0, to let the wave
function freely disperse with just the hopping term,

i
d

dt
ψn = −g (ψn+1 + ψn−1) . (8)

When 2gγ2
0 t � 1, the probability distribution develops

an interference pattern

pn (t) = |ψn (t)|2 ∝
1 + cos (n−n0−L/2)L

2gt[
1 + (n−n0−L/2)2

(2γ0gt)
2

]2 . (9)

Here the distance between fringes is 4πgt/L and the
width of the Lorentzian-squared envelope is 2γ0gt. In
the tight-binding regime, where γ0L � 1, we obtain a
large number of fringes. Equation (9) is the result we
plot with the exact solution within the main text.

If, on the other hand, one starts from a single kink
localized on link 0, ψn(t = 0) = δn,0, it will evolve into

ψn(t) ∼
ˆ π

−π

dke2igt cos keikn ∼ Jn(2gt), (10)

where Jn is a Bessel function. This will also give in-
terference, but not of the form in equation (9). We are
interested in the regime where these “intrinsic” oscilla-
tions due to the lattice are negligible. That is, if we start
with a kink wavepacket with some spread, γ0 from above,
then

ψn(t) ∼
ˆ π

−π

dke2igt cos keiknf [k/γ0], (11)

where f will give the Fourier transform of the initial
wavepacket that cuts off large k compared to γ0. When

Non-local quantum superpositions of
topological defects
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the kink is initially tightly bound tightly (large w and
γ0), then f is a constant for −π < k < π and we ob-
tain ∼ Jn(2gt). When w is weak and γ0 � 1, then
f cuts off |k| greater than γ0 and we can approximate
cos k ≈ 1 − k2/2, i.e., we can linearize the group veloc-
ity and obtain equation (9). The three movies show the
development of the interference pattern (of Fig. 4) for
different values of w.

Decoherence

Once the double-well potential has been switched off
there are no energy gaps 2ω or E0 to protect against even
weak decoherence. Under local, Markovian dephasing,
the state, described by a density matrix ρ (t), evolves
according to a master equation

d

dt
ρ (t) = −i [H0, ρ (t)]−

Γ

4

∑
n

[σz
n, [σ

z
n, ρ (t)]] , (12)

where H0 is the hopping Hamiltonian that gives rise
to the evolution in equation (8) and the initial state
is ρ(0) = |ψ+〉〈ψ+|. In the position representation,
ρ =

∑
m,n ρm,n|m〉〈n|, the master equation reads

dρm,n

dt
=ig (ρm+1,n + ρm−1,n − ρm,n+1 − ρm,n−1)

− Γ |m− n| ρm,n. (13)

We can consider regimes of strong or weak decoherence
when either Γ � g or Γ � g respectively.

1. Strong decoherence

When we temporarily set g = 0, the off-diagonal ma-
trix elements decay like ρm,n(t) = ρ(0) exp(−Γ|m− n|t).
Therefore, we can assume that deep in this regime only
the diagonal elements, ρn,n ≡ pn, and near-diagonal ele-
ments, ρn,n+1 = zn and ρn+1,n = z∗n, are non-zero. All
other elements, even if they are non-zero initially, quickly
become negligible. The master equation then simplifies
to the set of equations

dpn
dt

= g (sn−1 − sn) (14)

and

dsn
dt

= −Γsn − 2g (pn+1 − pn) , (15)

where sn = −i (zn − z∗n). Since Γ � g, the slave field sn
can be adiabatically eliminated and we obtain a lattice
diffusion equation

d2pn
dt2

= D (pn+1 − 2pn + pn−1) (16)

with the diffusion constant

D =
2g2

Γ
. (17)

When 2Dt � 1, the initial distribution pn = |ψ+
n |2

spreads into

p(Γ�g)
n (t) =

∑
m

|ψ+
m|2 1√

4πDt
e−

(n−m)2

4Dt (18)

without any interference fringes.

2. Weak decoherence

In case of weak decoherence, Γ � g, the initially
smooth wavefunction does not get localized in space so we
can make a long wavelength approximation (LWA) where
the lattice site numbers m,n are continuous coordinates.
In quasimomentum representation,

ρp,q(t) =
∑
m,n

ρm,n exp[i(pm− qn)], (19)

after going to the interaction picture and making the
LWA,

ρp,q(t) = ρ̃p,q(t) exp[2igt(cos p− cos q)]

≈ ρ̃p,q(t) exp[−igt(p2 − q2)], (20)

the master equation (13) becomes

dρ̃p,q
dt

= −Γ

ˆ ∞

−∞

dk

2π
e−2igt(p−q)k ρ̃p+k,q+k

ˆ ∞

−∞
dm |m|e−ikm .

(21)
Its exact solution gives a probability distribution in space

p(Γ�g)
n (t) =

1

π

∑
m

l(t)

l2(t) +m2
pn+m(t), (22)

where l(t) = gΓt2 and pm(t) is a probability distribution
in the absence of decoherence, i.e., the interference fringes
in equation (4).

The Lorentzian convolution (22) coarse-grains the
fringes in pm(t) on the scale l(t). l(t) becomes greater
than the distance between fringes at tdec � 4π/ΓL. This
is the (not quite unexpected) decoherence time when the
environment can distinguish between the ↑ and ↓ mag-
netization of the L sites between the potential wells.

The convolution (22) tends to a Lorentzian when l(t) is
much greater than the width of the envelope in equation
(4) or, equivalently, Γt � 1

2γ0. The Lorentzian is differ-
ent (wider) than the Lorentzian-squared envelope in the
decoherence-free fringes (4) and the asymptotic Gaussian
(18) in the strong decoherence limit.
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