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The double slit experiment provides a classic example of both interference and the effect of

observation in quantum physics. When particles are sent individually through a pair of slits, a

wave-like interference pattern develops, but no such interference is found when one observes

which “path” the particles take. We present a model of interference, dephasing, and measurement-

induced decoherence in a one-dimensional version of the double-slit experiment. Using this model,

we demonstrate how the loss of interference in the system is correlated with the information gain

by the measuring apparatus/observer. In doing so, we give a modern account of measurement in

this paradigmatic example of quantum physics that is accessible to students taking quantum

mechanics at the graduate or senior undergraduate levels. VC 2016 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4943585]

I. INTRODUCTION

There has been continual interest in the double slit experi-
ment for over two centuries, from its original incarnation for
light1 to its reincarnation after the advent of quantum
mechanics.2,3 More generally, interference in quantum
systems continues to be an active area of research, as experi-
mentalists endeavor to coax ever larger objects to interfere,4–6

to see interference in ion-trap and cold atom systems,7,8 and
to understand interference in exotic situations such as Bose-
Einstein condensates9 or with topological defects.10

The double-slit experiment is the paradigmatic example of
quantum mechanical “weirdness.” According to Feynman
et al., it contains “the only mystery [of quantum mechanics]”
where the particles—whatever they may be, electrons, pho-
tons, etc.—behave “sometimes like a particle and sometimes
like a wave.”11 In the conceptually simplest set-up, a stream
of particles is incident on a barrier in which two slits have
been made to allow passage. On the far side of the barrier
is a detection screen, which is ultimately examined to deter-
mine the outcome of the experiment. As is well known, the
detection screen will reveal an interference pattern if no
attempt—by an observer or otherwise, e.g., the environ-
ment—was made to determine which path was taken by the
particles, even when the particles are sufficiently separated
in time that only one is ever in the region containing the bar-
rier and the screen. The interference pattern disappears if a
detection apparatus is placed to determine which path is
taken by each particle. In other words, acquiring a particle’s
“which-path” information prevents it from exhibiting
interference. A schematic is shown in Fig. 1.

If, however, one is willing to forgo perfect determination
of the path, partial interference can be preserved. This rela-
tionship has previously been demonstrated in theoretical
analyses and proposed experimental realizations of the
double-slit experiment for light,12,13 and a general treatment
of imperfect two-state discrimination from basic quantum
mechanical principles can be found in textbooks.14 In short,
when the apparatus/observer acquires information about the
system the interference pattern disappears.

This deep relationship between interference and informa-
tion can be understood in the context of decoherence and
entanglement, and plays a significant role in understanding
the quantum-to-classical transition.15–21 While there exist a
multitude of papers22–28 and books29–31 on the more general
subjects of quantum information and decoherence, the
explicit application of these ideas to specific physical sys-
tems at a level suitable for students is lacking. To that end,
we examine a model of double-slit interference in the pres-
ence of measurement. The model allows the measurement
precision to be tuned, and thus to examine the interplay
between path information gained and the loss of interfer-
ence: when one distinguishes between a particle at the left
and right slits, then the interference is destroyed; when no
information is gained, then interference is manifest. This is
done in an example that is approachable by senior under-
graduate and first year graduate students, and thus should
help make the core concepts of interference, measurement,
distinguishability, decoherence, and dephasing more con-
crete in the classroom.

In order to keep the discussion concise, we assume that
the reader is familiar with certain mathematical and concep-
tual tools not necessarily presented in introductory courses,
the foremost of which are density operators,32 the evaluation
of Gaussian integrals,33 and the partial trace.34 We also pro-
vide only a brief introduction to quantum entropy and mutual
information.35 Students who have not had prior exposure to
these concepts may require overview before pursuing a
detailed understanding of the model. It is also convenient to
work with dimensionless parameters, but we wish to retain
the traditional symbols for readability. To that end, we fix a
length scale D (the slit width) and denote physical quantities
that carry a dimension with an overbar. The unbarred version
is then the natural dimensionless parameter determined by D
and physical constants. Hence we have dimensionless posi-

tion x ¼ �x=D, time t ¼ �h�t=mD2, momentum p ¼ �pD=�h,
and so on. Similarly, we use a dimensionless Hamiltonian

H ¼ ðmD2=�h2Þ �H, momentum operator, P ¼ ðD=�hÞ�P, and

position operator, X ¼ �X=D.
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II. INTERFERENCE WITHOUT MEASUREMENT

We first consider the case where no measurement is
attempted. The prototypical version of the double slit experi-
ment is to have particles impinge on a barrier one by one.
The barrier has two slits that let particles through, where
they then continue to travel until striking the detection
screen. The latter will reveal the interference pattern—or
lack thereof—that emerges after many repetitions of the
experiment. We will consider a simplified version of this
scenario where, as indicated in Fig. 1, there is just one spatial
dimension and the evolution starts after the single particle
exits the double slit.

When the particle—the system S—exits the slits in a
superposition of two Gaussian states,36 i.e., its state jWiS is
given by the wavefunction

hxjWiS ¼ WðxÞ ¼ A½e�ðxþLÞ2=2 þ e�ðx�LÞ2=2�; (1)

the two Gaussian components will begin to spread. Here, as
throughout, x and L are dimensionless parameters that corre-
spond to position and slit-spacing (2L), respectively, and which
depend implicitly on the slit-width. The normalization is

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
ffiffiffi
p
p

1þ exp �L2ð Þ
� �

s
: (2)

Note that time also represents the role of a second spatial
dimension—the one in which the source, barrier, and screen
are separated. As time moves on, one can imagine the parti-
cle moving from the barrier to the detection screen. More

formally, one could include the additional spatial dimensions
and integrate them out, as they do not play an important role.

Making use of the free-particle Hamiltonian H ¼ P2=2,
we find the time-evolved state by integrating

W x; tð Þ ¼
1

2p

ð1
�1

ð1
�1

e�ip2t=2eip x�x0ð ÞW x0ð Þ dx0 dp: (3)

Using the initial wavefunction and evaluating the resulting
Gaussian integral, one finds that the time-dependent wave-
function is given by

W x;tð Þ¼
Affiffiffiffiffiffiffiffiffiffi

1þ it
p exp � xþLð Þ2

2 1þ itð Þ

" #
þexp � x�Lð Þ2

2 1þ itð Þ

" #8<
:

9=
;:
(4)

The associated probability density is then

P x; tð Þ ¼ Cxt cosh
2xL

1þ t2

� �
þ cos

2txL

1þ t2

� �� �
; (5)

where the factor

Cxt ¼ 2A2ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p exp

�x2 � L2

1þ t2

� �
(6)

has been introduced for readability. The first term in Eq. (5),
the one with the hyperbolic cosine, is just a sum of two
Gaussian wavepackets, which represent particles coming
from the left or right slit, respectively. The second term, the
one with the cosine, describes the interference between these
two sources. Figure 2 shows the probability density, Eq. (5),
for various times—i.e., the separation between the slits and
detection screen—for a slit spacing 2L� 1.

III. THE EFFECT OF MEASUREMENT

We now want to consider how measurement affects the
appearance of interference. Specifically, we are interested in
how the interference pattern is lost as the amount of

Fig. 2. Probability density of a free particle with L ¼ 5 at different times

after passing through two slits. Note that this corresponds to the time of

flight from the slit to the detection screen. (a) Initially, the two packets are

well separated. (b) As they spread, they will start to interfere. (c) Eventually,

a well-defined interference pattern develops, which (d) begins to spread out.

Fig. 1. Schematic representation of the one dimensional version of the dou-

ble slit experiment. In this setup, a coherent superposition of two Gaussian

wavepackets of width D emerge from the two slits separated by a distance

2L. (a) When no measurement is made and coherence is otherwise pre-

served, the probability density P(x) shows that as time progresses the two

packets begin to interfere, ultimately resulting in a well-defined interference

pattern. (b) In the case of a perfect measurement, each particle takes either

the left or the right path. In this case P(x) observed at the detection screen

will be an incoherent sum of the two spreading Gaussian wavepackets, i.e.,

no interference will be present.
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information gained increases. In an introductory quantum
course, one would discuss, for example, double-slit interfer-
ence of electrons and measurement via photons. In this case,
the observation is performed by measuring scattered light,
which, with a suitably short wavelength, distinguishes the
position of the electron. As the wavelength is increased, the
scattered light no longer is imprinted with the left/right
position of the electron. Calculating this scattering process,
however, requires a large amount of background material,
unsuitable for introductory courses.

Instead, we consider an idealized measurement process
that nevertheless admits variable precision ranging continu-
ously from perfect measurement to no measurement at all.
Following the idea of a von Neumann chain,37 this process
will make use of an auxiliary quantum system, the apparatus
A. When the apparatus, in an appropriately initialized state

j0iA, interacts with a particle in the state jwLiS with wave-

function wLðxÞ that is completely localized around the left

slit (where we use the less strict condition, wLðxÞ ¼ 0 for
x > 0), a perfect measurement would bring the composite

state jwL; 0iSA to jwL; LiSA. Similarly, when the apparatus

interacts with a particle in a state jwRiS with a wavefunction

wRðxÞ that is completely localized around the right slit, a

perfect measurement would bring the state jwR; 0iSA to

jwR;RiSA. This process transfers information about the par-
ticle’s state into A, encoding the outcome of the left/right-
measurement in a subspace of dimension two spanned by the
basis states jLiA and jRiA. This left/right information is
accessible to observers who can “read” the apparatus state. If
one has a limited resolution measurement, or wavefunctions

wLðxÞ and wRðxÞ that have overlap, then this information
transfer cannot be perfect.

A. The measurement interaction

In general, after a measuring apparatus A interacts with a
system S, observers can infer the state of the system by inter-
acting with (and amplifying information from) the apparatus
through the standard measurement process; i.e., by meas-
uring a non-degenerate observable of A corresponding to the
possible measurement outcomes. Of course, such a subse-
quent measurement could be treated similarly, requiring yet
another measuring apparatus, and so on, leading one ulti-
mately to the von Neumann chain. We are here concerned
only with the first step in such a chain, considering only the
interaction between S and A. Later on, we briefly discuss the
observer as an additional link in the von Neumann chain.

In our case, the relevant (non-degenerate) eigenstates of A
are jLiA and jRiA. We assume that the apparatus and system
interact immediately after the particle passes through the slit,
so that the particle wavefunction, Eq. (1), does not have time
to evolve on its own before the measurement is made. As
usual, the interaction between the apparatus and the system
results in a unitary transformation of the joint state.
Specifically, in keeping with the above discussion, we
require that during the measurement process the joint state,
initially jW; 0iSA, evolves as

jW; 0iSA 7! jML
rW; LiSA þ jMR

rW;RiSA � jUiSA; (7)

during the interaction (here, as elsewhere, we use W for our
specific system state in distinction to the w used for generic

system states in the introduction to Sec. III). When the appa-
ratus registers “L”, the system will be in a state jWLi
/ML

rjWiS that is localized—to a precision r—around the
left slit due to the act of measurement itself. The conditional
state jWLi depends on both the initial system state and the
measurement operator (similarly for jWRi /MR

r jWiS). The
initial state and the states WL and WR resulting from such an
interaction are shown in Fig. 3(a) using an explicit form of
the measurement operator to be derived later in Eq. (16).
The right-hand side of Eq. (7) cannot, in general, be written
as a simple product of system and apparatus states. Thus, the
interaction has caused the two to become entangled (except,
of course, in the limiting case of no discrimination).

The operators ML=R
r appearing in Eq. (7) are called

“measurement operators” and are written inside the ket in
order to make clear the fact that they act only on the system
S. As noted, these operators determine the state of the parti-
cle after the measurement. Since the left/right measurement
distinguishes the position of the particle, it suffices to take
ML=R

r diagonal in the position basis, giving rise to a pair of
“measurement functions”

ML
rjxi ¼ mL

rðxÞjxi;
MR

r jxi ¼ mR
rðxÞjxi:

(8)

With this choice, the action of ML=R
r on the system wave-

function is purely multiplicative, hxjML=R
r jWi ¼ mL=R

r ðxÞ
WðxÞ. Since the apparatus states jLiA and jRiA are

Fig. 3. The effect of measurement. (a) The initial wavefunction W with

peaks at L ¼ 65 and the conditional states of the post-measurement wave-

function with r ¼ 4, WL ¼ mL
4W (dashed) and WR ¼ mR

4 W (solid). (b) The

measurement functions squared, ðmL
rÞ

2
(dashed), and ðmR

rÞ
2

(solid), versus

position. As r increases and the measurement becomes less precise, they

tend toward a common constant value; in the opposite limit, they become

complementary step-functions.
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orthogonal, the requirement that Eq. (7) constitutes a unitary
transformation will be satisfied whenever

ML
r

†

ML
r þMR

r
†

MR
r ¼ I; (9)

which, from Eq. (8), is equivalent to

jmL
rðxÞj

2 þ jmR
rðxÞj

2 ¼ 1: (10)

Equation (7) can then be extended to a unitary transforma-
tion defined on the whole joint Hilbert space. We note that,
while Eq. (7) does not uniquely determine this unitary trans-
formation on the whole space, it suffices as a description of
the interaction when the apparatus is initialized to j0iA.

While the composite state evolves unitarily, we are also
interested in the states of the system and apparatus sepa-
rately. In particular, we are interested in whether the system
state exhibits interference and how the apparatus state enco-
des information about the system. For this reason we will
examine the density operator qSA ¼ jUiSAhUj and the
reduced states of the system and apparatus. Taking the
partial trace38 gives

qS ¼ trAqSA¼AhLjqSAjLiAþAhRjqSAjRiA
¼ML

rjWiShWjML
r

† þMR
r jWiShWjMR

r
†

� 1

2
jWLiShWLj þ 1

2
jWRiShWRj; (11)

which is a mixture of the states corresponding to distinct
detection outcomes. Note that the degree of overlap between
the states jWLi and jWRi depends on the measurement preci-
sion; they are orthogonal when the measurement perfectly
distinguishes left from right (r ¼ 0) but identical in the
opposite limit of r!1 (in which case ML

r ¼MR
r ¼ I=

ffiffiffi
2
p

and no actual measurement is made). Hence, except in this
latter case, the system transitions from a coherent superposi-
tion or pure state (i.e., one representable by a ket) to a mixed
state (one which cannot be represented by a ket): it has been
decohered,28 to an extent that depends on the measurement
precision, through its interaction with the apparatus.

The partial trace over the system can be evaluated in the
position basis with the help of Eq. (8), leading to the appara-
tus state

qA ¼

ð
jmL

rj
2jWj2d x

ð
mR

rmL
rjWj

2d xð
mL

rmR
r jWj

2d x

ð
jmR

r j
2jWj2d x

0
BBB@

1
CCCA; (12)

when represented in the fjLiA; jRiAg subspace.
Further evaluation requires a definite choice of mL=R

r ðxÞ.
While there are many possibilities, a physically meaningful
choice can be made by considering first a continuous position
measurement,39,40 out of which we can build a coarse-grained,
binary measurement. To that end, consider the position-
indexed, commuting set of operators Frðx0Þ, defined by

Fr x0ð Þjxi ¼ 1

r
ffiffiffiffiffiffi
2p
p exp

� x� x0ð Þ2

2r2

" #
jxi; (13)

which represent a smooth analog of the projection operator
jx0ihx0j (to which Frðx0Þ tends as r! 0).

By integrating separately over the positive and negative
domains of Fr, we arrive at a pair of coarse-grained opera-
tors acting on the position basis as

FL
rjxi ¼

ð0

�1
Fr x0ð Þjxi dx0

¼ 1ffiffiffi
p
p
ð1

x=
ffiffiffiffiffi
2r2
p e�u2

du

 !
jxi;

¼ 1

2
Erfc

x

r
ffiffiffi
2
p

� �
jxi; (14)

FR
r jxi ¼

ð1
0

Fr x0ð Þjxi dx0 ¼ 1

2
Erfc

�x

r
ffiffiffi
2
p

� �
jxi; (15)

where we made use of the complementary error function
Erfc. These operators correspond to left and right positions
with precision r.

Comparing to Eqs. (9) and (10), we see that taking

mL
r �xð Þ ¼ mR

r xð Þ � mr xð Þ ¼ 1

2
Erfc

�x

r
ffiffiffi
2
p

� �" #1=2

(16)

yields measurement operators satisfying ML=R
r

†

ML=R
r ¼ FL=R

r .

One can check directly that the pair of operators FL=R
r satisfy

FL
r þ FR

r ¼ I, so we conclude that Eq. (16) provides a physi-
cally meaningful function that satisfies our criteria. Figure 3

shows how the function m2
r changes as one varies r.

Returning to Eq. (12) and inserting Eq. (16), one finds that
the diagonal terms evaluate to Gaussian integrals, which can
be computed exactly. The off-diagonal terms contain the
product mL

rmR
r , which does not result in a simple closed-form

expression (although it is easily evaluated numerically for
specific values of r). In order to obtain an analytic expres-
sion for arbitrary r, some approximation will be necessary.
To that end, recall that W is a superposition of two Gaussians
centered at L and �L, respectively. For L� 1, the value of
mr changes little over the regions in which W is non-
negligible. This can be seen qualitatively by considering the
curves in Fig. 3 or analytically by expanding mr in a Taylor
series about x ¼ 6L. For example, expanding around x ¼ L,
we find

mr xð Þ � mr Lð Þ þ e�L2=2r2

r
ffiffiffiffiffiffi
8p
p

mr Lð Þ
x� Lð Þ: (17)

Then for r > 0, mrðLÞ is bounded below by 1=
ffiffiffi
2
p

.
Substituting this lower bound for m and the maximizing the
derivative with respect to r shows that, for fixed L,

e�L2=2r2

r
ffiffiffiffiffiffi
8p
p

mr Lð Þ
� 1

2L
ffiffiffiffiffi
pe
p <

1

5L
: (18)

Hence, the linear coefficient here is certainly smaller
than 0:2=L for all r, i.e., over the width of the Gaussian
(1 in the dimensionless units employed here). The first-
order change to mrðxÞ near L is at most 0:2=L (this is a
worst case estimate, and for L¼ 5 gives a bound of 0:04).
Higher order terms are likewise suppressed. Similarly, the
first-order term near x ¼ �L is bounded by 0:4=L.41

We therefore consider mrðxÞe�ðx6LÞ2=2 � mrð7LÞe�ðx6LÞ2=2
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and mrð�xÞe�ðx6LÞ2=2 � mrð6LÞe�ðx6LÞ2=2; i.e., the func-
tions mrðxÞ are approximated, but not the Gaussian enve-
lopes. This results in the approximations

WLðxÞ ¼ hxjWLi ¼
ffiffiffi
2
p

mL
rðxÞWðxÞ

¼ A
ffiffiffi
2
p
½mrð�xÞe�ðxþLÞ2=2 þ mrð�xÞe�ðx�LÞ2=2�

�B½mrðLÞe�ðxþLÞ2=2 þ mrð�LÞe�ðx�LÞ2=2�; (19)

and

WRðxÞ ¼ hxjWRi ¼
ffiffiffi
2
p

mR
rðxÞWðxÞ

¼ A
ffiffiffi
2
p
½mrðxÞe�ðxþLÞ2=2 þ mrðxÞe�ðx�LÞ2=2�

�B½mrð�LÞe�ðxþLÞ2=2 þ mrðLÞe�ðx�LÞ2=2�: (20)

Note that in both WLðxÞ and WRðxÞ, each term in the super-
position is approximated separately.

A straightforward integration shows that the normalization
constant of the approximate states should be

B�2 ¼
ffiffiffi
p
p
ð1þ bre�L2Þ �

ffiffiffi
p
p

; (21)

where the approximation is for L� 1 (i.e., e�L2 � 1), and

br ¼ 2mrð�LÞmrðLÞ: (22)

As we will show, br, which ultimately depends on both r
and L through the ratio r=L, is the parameter that relates the
measurement precision to the visibility of interference
fringes and the information acquired by the measurement ap-
paratus. In some sense, one can think of br as the relevant
quantification of the overlap between the left and right
measurements.

Returning again to Eq. (12), it is clear that the approxima-
tion of Eqs. (19) and (20) does not affect the diagonal terms.
It does, however, allow us to evaluate the off-diagonal terms
as intended, which are now also just Gaussian integrals.
Doing so, we find

qA ¼
1

2

1
br þ e�L2

1þ bre�L2

br þ e�L2

1þ bre�L2 1

0
BBBB@

1
CCCCA �

1

2

1 br

br 1

 !
;

(23)

which has trace 1, as expected, and the eigenvalues are

k6 ¼
1

2
16

br þ e�L2

1þ bre�L2

 !
� 1

2
16brð Þ: (24)

As in Eq. (21), the approximate expressions are for
expð�L2Þ � 1, but we retain a finite r=L in br in order to
investigate the full range of measurement precision.

B. Post-measurement evolution

It is well known that the act of measuring exactly which
path a particle takes in passing through the slits prevents the
appearance of interference effects. Having determined the
immediate effect of measurement on the particle’s state, we

must now evaluate the subsequent evolution in order to
determine how the interference is affected.

After the measurement, the system evolves as a free parti-
cle while the apparatus remains unchanged. The joint evolu-
tion is

jW; 0i7!jML
rW; LiSA þ jMR

rW;RiSA

7! 1ffiffiffi
2
p jU tW

L; Li þ 1ffiffiffi
2
p jU tW

R;Ri; (25)

with U t ¼ e�iP2t=2 and jWL=Ri given in Eq. (11). We thus
have a system state comprising an equal mixture of the
wavefunctions

WL=R x; tð Þ ¼ hxjU tjWL=Ri

¼
ð

e�
i
2
p2thxjpi

ð
hpjyihyjWL=Ri dy dp: (26)

Evaluation of the inner integral can be done with approxi-
mations (19) and (20) and hxjpi ¼ eixp=

ffiffiffiffiffiffi
2p
p

, which reduces
the integrals appearing in Eq. (26) to a sum of Gaussian inte-
grals. These give

WL x; tð Þ ¼
B2

1þ it

� �1=2

mr �Lð Þexp
� xþLð Þ2

2 1þ itð Þ

" #(

þmr Lð Þexp
� x�Lð Þ2

2 1þ itð Þ

" #)
; (27)

and

WR x; tð Þ ¼
B2

1þ it

� �1=2

mr Lð Þexp
� xþ Lð Þ2

2 1þ itð Þ

" #(

þmr �Lð Þexp
� x� Lð Þ2

2 1þ itð Þ

" #)
: (28)

Recalling that our particle is in an equal mixture of these
two states, the probability density associated with detecting
the particle at position x is given by

Pr x; tð Þ ¼
1

2
jWL x; tð Þj2þ

1

2
jWR x; tð Þj2

¼ Cxt
r cosh

2xL

1þ t2

� �
þ br cos

2txL

1þ t2

� �� �
; (29)

where we have reintroduced and generalized

Cxt
r ¼

exp
�x2 � L2

1þ t2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ pt2
p

1þ bre�L2
	 


�
exp

�x2 � L2

1þ t2

� �
ffiffiffi
p
p ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p ; (30)

for readability. As for the unmeasured free particle, the first
term in the brackets (the hyperbolic cosine) describes the
spread of the two incoherent Gaussian wavepackets with
time. The second term (with the cosine) gives rise to the in-
terference pattern and is also the same as in Eq. (5), except
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for a factor of br. Hence, we recover the unmeasured case in
the limit where the measurement is not at all precise, for
r!1 (br ! 1), and the interference is suppressed for
smaller values of r. In the limit of a perfectly precise mea-
surement, r! 0 (br ! 0), the interference term vanishes
and we find

P0 x; tð Þ ¼ Cxt
0 cosh

2xL

1þ t2

� �

/ exp
� xþ Lð Þ2

1þ t2

" #
þ exp

� x� Lð Þ2

1þ t2

" #
; (31)

which describes an incoherent sum of the particle coming ei-
ther from the left or right slit as shown in Fig. 1(b).

Figure 4 demonstrates how the distribution varies as r
increases.42 Beyond this qualitative demonstration, a quanti-
tative description is provided by the interferometric visibil-
ity, which relates the amplitude of a wave to its average
value. At sufficiently late times, when a maximum appears at
x ¼ 0, this visibility may be expressed as

V ¼ P 0; tð Þ � P x	; tð Þ
P 0; tð Þ þ P x	; tð Þ

; (32)

where x	 ¼ pð1þ t2Þ=2tL corresponds to the first minimum
of the oscillation term. Evaluating Eq. (32) then yields the
expression

V ¼ Cr
0t 1þ br½ � � Cr

x	t cosh 1=tð Þ � br½ �
Cr

0t 1þ br½ � þ Cr
x	t cosh 1=tð Þ � br½ � ; (33)

which, after canceling common factors and taking the limit
t!1, reduces to

V ¼ 1þ brð Þ � e�p2=4L2

1� brð Þ
1þ brð Þ þ e�p2=4L2

1� brð Þ
� br: (34)

Hence, for large L, we have V � br. Thus,
br ¼ 2mrðLÞmrð�LÞ, which is a quantification of the mea-
surement precision with respect to the slit width. It further

has a direct physical meaning as the visibility of the post
measurement interference fringes.

IV. INFORMATION

We have called the interaction determined in Eq. (7) a
measurement interaction on the grounds that a subsequent
projective measurement of the apparatus alone will allow an
observer to infer (or attempt to infer, in the case of an imper-
fect measurement) the state of the system. This interaction is
just a particular example of a positive-operator valued mea-
sure (POVM).43 The key idea is that the apparatus acquires
information about the state of the system due to this interac-
tion. To make this statement quantitative, we make use of
two key ideas from the theory of quantum information: en-
tropy and mutual information.

For any state represented by a density operator q with
eigenvalues fkig, the von Neumann entropy is defined by

HðqÞ ¼ �tr½q log2q� ¼ �
X

i

ki log2ki; (35)

in which we take 0 log 0 ¼ 0 whenever it arises. In particu-
lar, HðqÞ 
 0, with equality if and only if the state is pure
(i.e., ki ¼ 1 for one i and ki ¼ 0 otherwise). Hence, the en-
tropy is a measure of our state’s “mixedness” and quantifies
our uncertainty about the state of the system. It thus also
quantifies the amount of information we gain about the sys-
tem when a measurement is made.44

If our system is composed of two subsystems in a state
qSA and with reduced states qS and qA, the quantum mutual
information between S and A is defined by

IðS : AÞ ¼ HðqSÞ þ HðqAÞ � HðqSAÞ: (36)

This quantifies the amount of information about system S
that is in A.

In the case of a measurement implemented by some appa-
ratus as described previously, we have

IðS : AÞ ¼ HðqSÞ þ HðqAÞ � HðqSAÞ (37)

¼ HðqSÞ þ HðqAÞ; (38)

since the joint-state is pure (having evolved unitarily from a
pure product state). Moreover, when the joint state is pure,
the Schmidt decomposition45–47 ensures that we can use
jUiSA ¼

P
iaijiiS � jiiA, where fjiiSg and fjiiAg are ortho-

normal bases for the two subsystems, in writing the joint
density matrix qSA ¼ jUiSAhUj. Taking the partial traces,
one can see that the values faig will be the eigenvalues for
both qS and qA, so that their entropies will be the same. In
particular, we have

IðS : AÞ ¼ 2HðqAÞ ¼ 2HðqSÞ: (39)

Again, the entropy HðqSÞ gives a measure of the mixed-
ness (the degree of decoherence) of our system state after the
measurement. This measurement-induced decoherence of
the system is associated with information acquisition by the
measurement apparatus, which is reflected in this generation
of entropy. That is, the system goes from a pure state ini-
tially, with entropy of zero 0, to a mixed state with nonzero
entropy.

Fig. 4. Probability density with L ¼ 5 at t ¼ 30 for various values of r.

Insets show simulated detection screens. (a) At r ¼ 0, a perfect measure-

ment has been made; only a single, broad fringe appears. (b) As r passes

r	 � 3L=10, interference begins to appear. Increasing r further, (c) the dif-

ference between constructively and destructively interfering regions is

clearly visible, so that (d) by r ¼ 3L the interference is nearly total.
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Following Eq. (39), we see that determining the mutual in-
formation between the system and the apparatus amounts to
finding the entropy for the reduced state of either the system
or the apparatus. In a general measurement scheme, these
may depend on time, but when the system and apparatus
states undergo independent unitary evolution after the mea-
surement process, we need only consider the states immedi-
ately after the measurement.48 In our case, for example, the
particles passing through the slits evolve as free particles
after the interaction, while the apparatus state remains
unchanged. Hence, we may compute the mutual information
from the state of the apparatus immediately after the mea-
surement, without involving the more complicated time-
dependent state of the particle.

We have previously already found the eigenvalues of the
state qA after measurement has occurred, which are given in
Eq. (24). These eigenvalues give the mutual information

IðS : AÞ ¼ 2HðqAÞ ¼ 2ð�kþ log2kþ � k� log2k�Þ:

In the limit of no measurement, r!1, the eigenvalues
are 1 and 0, so the mutual information is zero: the apparatus
stores no information about the state of the system. This limit
is precisely that in which the standard interference pattern is
observed. On the other hand, r! 0 corresponds to the com-
plete absence of interference and the eigenvalues monotoni-
cally approach ð16e�L2Þ=2 � 1=2, in which case the mutual
information approaches IðS : AÞ ¼ 2. The dependence of
the mutual information and visibility on the precision r is
shown in Fig. 5, demonstrating that as the information
gained by the apparatus decreases, the visibility of the inter-
ference increases.

As is shown in Fig. 5, both IðS : AÞ and V are initially flat
as r increases from 0, as at small r the measurement is
extremely precise and the particle at the left and right slits
can be effectively distinguished. Beyond a threshold value,

r ¼ r? � 3L=10,49 the apparatus rapidly loses the ability to
distinguish between the two paths, and interference begins to
emerge.

Considering the above discussion, one notes that the quan-
tum mutual information indicates that, in the case of perfect
measurement, we get two bits of information, despite the fact
that the information in which we are interested appears to be
a simple binary statement regarding the particle’s path, or
one bit. This is a peculiarity of quantum information, corre-
sponding to the existence of non-classical correlations
(entanglement) between the apparatus and the system. If
there is a third link in the von Neumann chain—e.g., an ob-
server making measurements on the apparatus—we will find
that there is only one bit of information between the system
and apparatus or between the system and observer. Indeed,
that there are many links in the von Neumann chain, includ-
ing not just the apparatus and observer, but also the large sur-
rounding environment, e.g., photons, is why quantum
correlations are so hard to detect.19 The presence of many
such links is reflected in the redundant acquisition of infor-
mation by the environment, which is the quantum Darwinian
process responsible for the emergence of the classical, objec-
tive world.21 To see this, consider an observer O that per-
fectly measures the apparatus immediately after the particle
has been measured. In other words, if the observer is initially
in the state j0iO, the observer and the apparatus evolve
according to

jL; 0iAO 7! jL; LiAO;
jR; 0iAO 7! jR;RiAO:

(40)

Then we should replace Eq. (7) with

jW; 0;0iSAO 7!
1

2
jWL;L;LiSAO þ

1

2
jWR;R;RiSAO; (41)

where for a perfect measurement the system states jWLi and
jWRi would be orthogonal.

If we now compute the partial trace over the apparatus as
done in Eq. (11), we find that the joint system-observer state
is

qSO ¼
1

2
jWL; LiSOhWL; Lj þ 1

2
jWR;RiSOhWR;Rj: (42)

A second partial trace over the observer will recover Eq.
(11), showing that the entropy of the particle is unaffected
by the observer’s measurement of the apparatus. The entropy
of the observer, though, is HðqOÞ ¼ 1. In contrast to the
previous discussion, the joint state qSO is not pure, so its
entropy does not vanish. Rather, the orthogonality of
jWL; LiSO and jWR;RiSO, due to the presence of the left/right
record in the observer’s state, indicate that this too has
HðqSOÞ ¼ 1. Hence, the mutual information is

IðS : OÞ ¼ HðqSÞ þ HðqOÞ � HðqSOÞ (43)

¼ HðqSÞ þ 1� 1 ¼ HðqSÞ; (44)

indicating that the observer acquires an amount of informa-
tion equal to what is available about the path of the particle,
HðqSÞ. If path information is present, or the measurement
precision is r! 0 yielding HðqSÞ ! 1, then the observer
will acquire 1 bit of information. If not, HðqSÞ � 0, the

Fig. 5. The dependence of mutual information IðS : AÞ and visibility V on

r. Extremely precise measurements, corresponding to small values of r,

result in the apparatus acquiring significant information about the system

while the interference is negligible. As r increases, the measurement is less

capable of distinguishing the particle’s path, and the apparatus fails to deco-

here the system state. Hence, less information is transferred into the appara-

tus and the interference becomes significant. Visibility is calculated

according to the exact expression in Eq. (34) with L ¼ 5. The vertical

dashed line at r? � 3L=10 indicates the approximate precision at which this

transition begins to become apparent. Dots indicate values calculated

numerically from the exact apparatus state, Eq. (12), for L ¼ 5. Triangles

correspond to r values considered in Fig. 4.
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observer will learn nothing about the path of the particle and
interference will be observed at the screen. When the
observer is present and the global state is Eq. (41), the appa-
ratus will also have mutual information given in Eq. (44), as
entanglement with S is “locked up” in joint correlations
between S and AO.

Finally, we note that in the large L approximation, Eqs.
(24) and (34) together allow us to write

I S : Oð Þ ¼ Hbin
1þ V

2

� �
: (45)

This explicitly connects the information gain by the
observer with the loss of visibility of the interference fringes
through the binary entropy

HbinðxÞ ¼ �x log2x� ð1� xÞ log2ð1� xÞ; (46)

which characterizes the uncertainty regarding the outcome of
a classical event that could result in one of two outcomes
with probabilities x and 1� x, respectively. When the fringes
are readily apparent V � 1 and the information acquired by
the observer (or apparatus) is IðS : OÞ � 0. On the other
extreme, when the fringes are not visible V � 0 and the
information gain is IðS : OÞ � 1. Note also that in the inter-
mediate regimes one can have quite high visibilities even for
IðS : OÞ near 1, but for r � L=2 there are still visible inter-
ference fringes despite gaining nearly complete information
about the system’s path. This fact was also noted in the case
of interference of photons.12

V. CONCLUSION

By considering a specific model of double-slit interfer-
ence, we have shown how the precision with which one
determines the path of particles passing through the slit is
directly correlated with the loss of observed interference
effects in the subsequent evolution of the particles. In partic-
ular, we have shown how the absence of interference can be
attributed to an apparatus gaining maximal information,
while a measurement that acquires no information about
the system has no effect on the interference (note that the
apparatus may be a physical device, an observer, or the
environment).

It bears mentioning that while we have focused exclu-
sively on how the act of measurement can cause a loss of in-
terference, this is by no means the only reason interference
may not be observed. Another cause for interference loss is
dephasing, which occurs when, for example, the relative
phase between the two Gaussians in the superposition from
trial to trial. In this case, the absence of interference is a sta-
tistical result arising from the oscillation term acquiring a
different phase in each trial, which causes the probability
density to be shifted. If the phase is Gaussian distributed
with a width c (and mean 0), then the expected probability
density for a free particle (br ¼ 1) becomes

hPi � Cxt cosh
2xL

1þ t2

� �
þ e�

1
2
c2

cos
2xLt

1þ t2

� �� �
; (47)

when L� 1 (this calculation is similar to that in Sec. II).
Hence, a sharply peaked distribution of phases will exhibit
interference that becomes washed out as the distribution
widens. While this “dephasing” process produces a similar

experimental outcome (namely, the loss of interference), it is
important to note that the physical process is quite different
than that of measurement-induced decoherence.31 In particu-
lar, decoherence removes interference from the wavefunc-
tion for every trial, whereas the loss of interference due to
dephasing is found only as a result of averaging over many
different trials.

The model we have examined serves as a concrete exam-
ple of the relationship between information and interference
in quantum systems. It is approachable by students in the lat-
ter portion of introductory courses (such as the second or
third course in a year-long sequence), including those at the
upper-undergraduate level in many programs. It can serve as
a basis for homework problems and projects by considering,
for example, small L rather than large L approximations, dif-
ferent amplitudes in the initial superposition, more general
measurement schemes, application of numerical and approx-
imation techniques, or a double-well preparation of the ini-
tial state (e.g., using two delta function potentials), among
other things. It will thus provide a link between the usual
conceptual discussion surrounding the double slit experiment
and actual calculations, as well as bring a modern account of
measurement into the classroom.
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