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Maxwell-Hall access resistance in graphene
nanopores†

Subin Sahu abc and Michael Zwolak *a

The resistance due to the convergence from bulk to a constriction,

for example, a nanopore, is a mainstay of transport phenomena. In

classical electrical conduction, Maxwell, and later Hall for ionic

conduction, predicted this access or convergence resistance to be

independent of the bulk dimensions and inversely dependent on

the pore radius, a, for a perfectly circular pore. More generally,

though, this resistance is contextual, it depends on the presence of

functional groups/charges and fluctuations, as well as the (effective)

constriction geometry/dimensions. Addressing the context generically

requires all-atom simulations, but this demands enormous resources

due to the algebraically decaying nature of convergence. We develop

a finite-size scaling analysis, reminiscent of the treatment of critical

phenomena, that makes the convergence resistance accessible in

such simulations. This analysis suggests that there is a ‘‘golden aspect

ratio’’ for the simulation cell that yields the infinite system result with a

finite system. We employ this approach to resolve the experimental

and theoretical discrepancies in the radius-dependence of graphene

nanopore resistance.

Ion transport through pores and channels plays an important
role in physiological functions1–3 and in nanotechnology, with
applications such as DNA sequencing,4–6 imaging living cells,7–9

filtration,10 and desalination,11 among others. These pores localize
the flow of ions and molecules across a membrane, where sensors,
for example, nanoscale electrodes for DNA sequencing,12–18 can
interrogate the flowing species as they pass through and where
functional elements can selectivity regulate the movement of
different species (for example, ion types).

In particular, from DNA sequencing19–22 to filtration,23–27

graphene nanopores and porous membranes are one of the
most promising materials for applications. Novel fabrication
strategies and designs are under development to create large-scale,

controllable porous membranes25,26,28 and graphene laminate
devices.23,24 Moreover, their single atom thickness makes these
systems ideal for interrogating ion dehydration,29,30 which both
sheds light on recent experiments on ion selectivity in porous
graphene25,26,28 and will help analyze the behavior of biological
pores.29,30 Dehydration has been predicted to give rise to ion
selectivity and quantized conductance in long, narrow pores31–35

but the energy barriers are typically so large that the currents are
minuscule, which is rectified by the use of membranes with
single-atom thickness.29,30

Despite the intense and broad interest in ion transport, one
of its most fundamental aspects, the convergence of the bulk to
the pore, is essentially not computable with all-atom molecular
dynamics (MD),36 yet is very important for understanding
in vivo operation and characteristics of ion channels.37 Experi-
ments on mono- or bi-layer graphene, show a dominant 1/a
access resistance for a pore of radius a19,38,39 as expected for an
atomically thin pore. Other experiments, however, seemingly
yield 1/a2 behavior.21 Moreover, simulations give contradictory
results, some40 with 1/a and others6 with 1/a2. We develop a
finite-size scaling analysis for all-atom MD to extract the full
resistance, both access and pore, to allow direct comparison
with experimental results. Using this, we show that graphene
pores, see Fig. 1, have both an access and pore resistance
contribution all the way to the dehydration limit.

Hall’s form of access resistance41 is the classic result for ions to
converge from bulk, far away from the pore, to the pore mouth,

RMH ¼
g
4a
; (1)

where g is the electrolyte resistivity and a is the pore radius.
When taking this resistance for both sides of the membrane, it
is the same form of resistance originally given by Maxwell42 and
later by Holm43 and Newmann44 for the electrical ‘‘contact’’
resistance of a circular orifice, which has a ballistic counterpart
known as the Sharvin resistance.45 Maxwell’s formula for con-
tact resistance is valid when the radius of the orifice is much
larger than the mean free path of the electrons but in general
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the electric contact resistance is a combination of the Maxwell
and Sharvin resistance.46,47 The access resistance for ion trans-
port, however, does not have any ballistic component. We also
note that the same form of access resistance is also present in
thermal transport48,49 and gas diffusion.50

The above result assumes hemispherical symmetry and homo-
geneous medium (that is, no concentration gradients, even
near the pore, and no charges or dipoles on the membrane),
as well as an infinite distance between the pore and the
electrode. These assumptions can hold for small voltages and
for well-fabricated pores (for example, recent low-aspect ratio
pores show only an access contribution following eqn (1)51).
Moreover, factors such as surface charges,52 concentration
gradients,53,54 and an asymmetrical electrolyte55 will influence
the access resistance.

Halls form of access resistance is independent of bulk size,
which will hold so long as the bulk dimensions are large
and balanced (that is, the height of the cell should not be
disproportionately large compared to its cross-sectional length).
In confined geometries, however, strong boundary effects or
unbalanced dimensions modify this behavior (for example, in
scanning ion conductance microscopy the imposed boundary
close to the pore causes the access resistance to deviate from
eqn (1)8,56). In MD, in particular, the simulation cells are both
highly confined and periodic to collect sufficient statistical
information on ion crossings. We thus examine the access
resistance for a finite bulk. Its derivation is easier in rotational
elliptic coordinates,43,44,57,58 x and Z, which are related to
cylindrical coordinates, z and r, via

z = axZ (2)

r ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2ð Þ 1� Z2ð Þ

q
: (3)

Laplace’s equation for the potential then becomes

@

@x
1þ x2
� �@V

@x

� �
þ @

@Z
1� Z2
� �@V

@Z

� �
¼ 0: (4)

For boundary conditions, we consider a spheroidal electrode,
representing the equipotential surfaces that form even when a
flat electrode is present, and a circular pore. That is, (1) V = 0
on the pore mouth (x = 0), (2) V = V0 on a spheroidal electrode
at distance l (x = l/a), and (3) qV/qZ = 0 on the membrane surface
(Z = 0).

Although clearly idealizations, we see features that reflect
these boundary conditions from all-atom MD. Applying a
constant electric field along the z-axis gives rise to the ion flow
patterns and electric fields in Fig. 2. Due to the pore resistance,
a charged double layer forms,59 with enhanced cation (anion)
density on the positive (negative) voltage side. The potential at
the pore mouth (which is essentially the whole pore due to the

Fig. 1 Schematic illustration of a graphene nanopore. The ionic solution is
partitioned by a graphene monolayer (the gray, honey-comb membrane)
of thickness hp. Potassium (purple) and chloride (yellow) ions are shown as
van der Waals spheres but water is not shown even though it is explicitly
present in the simulations. The remaining details are in the ESI.† Red
indicates the access region. The total simulation cell is of height H + hp and
cross section L � L.

Fig. 2 Electric potential and total resistance. (a) The potential V (color map with contour lines at 0.05 V intervals) and normalized current density (arrows)
with a 1 V applied potential and a 1.18 nm pore radius. The resistance is large in the pore region, resulting in a large electric field across the membrane
[over about 1 nm]. (b) Resistance versus the cell height H (magenta) and cross-sectional length L (green) for the pore in (a). For R versus H (L), we use
L = 9.6 nm (H E 14 nm). Eqn (9) provides a good fit to the data, yet it predicts that RN is higher than where the data apparently converges. This is due to
the bulk dimensions not changing in tandem as the ansatz indicates should be done. The value of RN, though, is consistent with the proper scaling
procedure, see Fig. 4. We use the electrolyte resistivity from MD simulations of a bulk-only cell, which gives g E 70 MO nm. Unless otherwise noted, all
error bars are �1 block standard error.
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atomic thickness) is not constant, but is roughly so. The
deviation is mainly due to the potassium ions coming closer
to the membrane than chloride ions, pushing the potential
outward. That is, the asymmetry between cations and anions
(in sizes, charges, interactions), as well as other effects, distort
the potential surface. The equipotential surfaces have roughly a
spheroidal form (with deviation due to both simulation error,
the accumulated simulation time needs to be very large, and
also due to atomic-scale features of the graphene, water, and
ions). Due to the large voltage and the non-zero pore resistance,
only boundary condition (3) does not appear to be present.
However, we expect the right functional dependence of the
finite-size deviation from the Maxwell-Hall form.

Using these boundary conditions, eqn (4) yields

V

V0
¼ tan�1 x

tan�1ðl=aÞ: (5)

The ionic current through the pore is then

I ¼ 1

g

ða
0

@V

@z

����
z¼0

rdr ¼ 2paV0

g tan�1ðl=aÞ; (6)

giving the access resistance

Raccess ¼
g tan�1ðl=aÞ

2pa
� RMH 1� 2a

pl

� 	
; (7)

where the approximation is up to O
a

l

h i3
(when l is about 2a, the

higher order corrections are small, about 2.6%, likely much
smaller than corrections due to atomic details at this scale). In
confined geometries, one needs to account for the a/l correc-
tion term, especially in MD where the computational cost
typically keeps the ‘‘bulk’’ dimensions around 10 nm.

Away from the membrane, the equipotential surfaces start to
become flatter, taking on a bulk-like form. That is, the flow
lines, while pointing towards the pore near its entrance/exit,
orient along the z-axis further away, as do the electric field
lines. For a simulation cross-sectional area of A = GL2, where
G = p/4 for a cylindrical cell and G = 1 for a rectangular cell,
the access region must end by l = f1L/2, with f1 B O(1), as the
ellipsoidal potential surfaces encounter the cell boundary.
Sometime afterward, at f2L/2 with f2 B O(1), a normal bulk
region appears. Thus, the total resistance is approximately

R ¼ 2 RMH �
g

2pf1L=2

� 	
þ g H � 2f2L=2ð Þ

GL2
þ gf3
GL
þ Rpore: (8)

The first (access-like) term occurs on both sides of the
membrane (giving the factor of 2). The second (bulk-like) term
uses the total height H minus the two access/transitory regions
of height f2L/2 (H does not include the membrane thickness
and charged double layers, and it must be reasonably larger
than f2L). Fig. 2(b) shows that we indeed have this bulk-like
region as the resistance increases linearly with H. The third
term is a correction, gf3/GL, to account for the resistance of the
transition region between the access and the normal bulk, both
of which would drop as 1/L in that finite region.

We note that some previous studies have shown the depen-
dence of the ionic current on the cell height.60,61 However, in
ref. 60, the dependence is examined in the context of changing
field with the height and, in ref. 61, the difference is considered
insignificant. In linear response, the pore resistance should be
independent of the applied field. While we have a 1 V potential,
the main findings hold for smaller voltages, as continuum
simulations demonstrate, and there is roughly linear behavior
of the graphene I–V curve at this voltage.29

Since all three corrections depend on 1/L, we can combine
them into a single term, yielding

R ¼ g
H

GL2
� f

GL

� 	
þ R1; (9)

where RN is the combined access and pore resistance when all
the linear dimensions of the cell are balanced and large
compared to the pore radius. The behavior of RN is expected
to be RN = 2RMH + Rpore from Hall’s theory, which we will show
later to hold for graphene pores down to the dehydration limit.
The factor f = 2G/pf1 + f2 � f3 depends on geometric details
of the cell. Assuming f1 E f2 E 1 (and f3 small), f E 1.6 for a
rectangular and f E 1.5 for a cylindrical cross-section. The
estimates will remain close even if f3 is substantial, so long
as the transitory region is approximately a mix of access and
bulk-like behavior. Despite these estimates, we treat RN and f
as fitting parameters.

Fig. 2(b) already shows that this scaling form can capture the
dependence of the resistance on the cell dimensions. However,
a very peculiar behavior arises: RN is above the decay of R with
L. The scaling form, though, suggests that one should take
H = aL, where a is the cell aspect ratio, reducing eqn (9) to

R ¼ g
a� f

GL

� 	
þ R1. This indicates that if we knew f exactly, we

could take a = f, that is, a ‘‘golden aspect ratio’’ (the estimated

f is not the actual golden ratio, 1þ
ffiffiffi
5
p� �


2) to remove the
L-dependence of R and obtain R = RN for a finite size simula-
tion cell. Of course, if the simulation cell is too small, the
potential and densities will be artificially distorted at the
periodic boundary (or finite edge). Since we do not know f
exactly, we will take a = 2, somewhat larger than the expected
value of f, which will simultaneously ensure that R converges to
RN from above and reduce the amount that R changes as L
increases. As well, H should be reasonably larger than twice the
access region, as otherwise ions would have unusual flow
patterns. We prove the existence of the golden aspect ratio
using continuum simulations in ref. 65.

We first examine eqn (9) with continuum simulations, that
is, using Laplace’s equation, of both rectangular and cylindrical
(finite) cells using a commercial finite element solver. Fig. 3
shows that continuum simulations are in good agreement
with the ansatz and allow for the extrapolation of RN using
small simulation cells, which bodes well for the small simula-
tion sizes typical of all-atom MD. Moreover, it suggests that
using the constant aspect ratio cells is better, as it yields less
deviation over all.
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We now employ our finite-size scaling ansatz to examine the
total resistance in graphene nanopores. Fig. 4(a) shows the
resistance versus L for H = 2L. Using the extracted RN, we can
determine the behavior of the resistance versus a (due to the
computational cost, we examine only a small range of a), see
Fig. 4(b). We find that even at the nanometer scale, the
resistance of graphene follows the continuum form

R1 ¼ 2RMH þ Rpore ¼
g
2a
þ ghp
pa2

: (10)

However, the radius cannot be taken as the geometric radius
(the largest circle that will fit within the pore, even correcting
for van der Waals interactions). Rather, the radius is deter-
mined by the accessible area in the pore. Fig. 4(c) shows how
the current density in the pore tapers off as the radial coordi-
nate increases (see also the ESI†). Hence, taking the pore radius
from the actual effective area for current to flow accounts
for hydration layers around the ions and van der Waals inter-
actions, as well as fluctuations of the pore edge. Doing so, we
find RN = g/2a + heff

p g/pa2 with heff
p = (1.2 � 0.1) nm. That is, we

find the Maxwell-Hall access contribution and an effective
thickness of 1.2 nm in agreement with the charged double
layer separation. This thickness is larger, but within the error,
of the 0.6 nm value found experimentally,19,39 where, however,
the voltage was an order of magnitude smaller and thus the
charge double layer was less prominent.

Thus, the resistance is a combination of both 1/a and 1/a2

behavior. Contextual aspects due to, e.g., van der Waals interac-
tions, hydration layers, edge fluctuations, charge double layers,
and potentially effective ion mobilities in the pore, obscure the
parameters that appear in RN, making it difficult to determine
the dependence of the resistance on the radius. Indeed, the
proper pore radius, the one related to the accessible area, is
crucial. Experimentally, there are many sources of ambiguity:
uncertainties in measured values and in the pore depth (for
example, multi-layer versus single layer graphene) and pore size
(and aspect ratio/non-circularity), plus unknown charged func-
tional groups or dipoles (that would enhance 1/a behavior by
creating excess density at the membrane surface that ‘‘feeds’’
the current through the pore via its circumference), all affect
either the balance of 1/a and 1/a2 behavior, or how well one can
extract that behavior. This list can also include nonlinearities
(for example, MD simulations show the onset of polarization-
induced chaperoning of ions,29 which can tilt the balance in

Fig. 3 Pore and access resistance in continuum simulations. Resistance
versus the bulk dimension L for cylindrical (circles) and rectangular
(squares) cells. The membrane height is 1 nm (that is, approximately that
for graphene plus the charged double layer) and the pore radius is a = 1 nm
(and g is from MD for consistency). The bulk height is fixed to H = 140 nm
in the top panel and the aspect ratio is fixed at H = 2L in the bottom panel.
We fit eqn (9) for L r 16 (solid lines) and extrapolate to larger L (dashed
lines). The fit accurately determines RN. Hence, the small simulation sizes
in all-atom MD should be sufficient to obtain RN.

Fig. 4 Pore and access resistance in graphene. (a) The three panels show
the resistance versus cross-sectional length of the simulation cell for
different pore sizes. The resistance from MD is shown in circles and the
resistance corrected to H = 2L is used for fitting the model (equilibration
changes H from its initial value). The scaling analysis suggests that the
‘‘golden aspect ratio’’ of H/L E (1 + 2/p) will remove L dependence of R.
We choose an aspect ratio slightly above this so that the variation of R
is small but that the infinite system limit is approached from above.
Unbalanced cells, for example, Fig. 2(b) and Fig. 3 upper panel, give much
larger changes in R and can also result in unusual convergence to RN.
(b) The extracted RN versus the pore radius a indicates that there is a
Maxwell-Hall access contribution. (c) Normalized current density inside a
pore (a = 1.18 nm) showing that the effective pore radius is about 0.25 nm
smaller than the geometric radius. The errors in f and RN are approxi-
mately �0.1 and �1 MO, respectively, for all of the pores.
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favor of access resistance as the dominant resistance). Different
membranes and conditions can thus display diverse behavior,
but ‘‘ideal’’ graphene membranes with pores larger than the
dehydration limit have both access and pore contributions.
As the pore radius increases, though, access resistance will
dominate, as seen in ref. 19. The observation of 1/a2 behavior
must be due to interpretation (for example, the inclusion of
multi-layer membranes in the data fitting, or the fitting itself)
or due to some unknown aspect of the experimental setup.

Our results demonstrate that one can capture pore and
convergence resistance in reasonably sized simulations, despite
the long-range nature of the access resistance. One may
also extract separately the access and pore contributions to
resistance, which, however, would require knowing where to
partition the voltage drop (in the presence of charge double
layers and other nanoscale structures, this is not a simple task).
Thus, when designing porous membranes, one can use MD to
both capture the ‘‘contextual’’ aspects of the pores, atomic scale
details such as charges, fluctuations, and geometry, and the
influence of the bulk electrolyte. This will allow for a quantita-
tive comparison between measurements and simulations.
Moreover, filtration and other nanopore technologies typically
require many pores. The access contribution in such porous
membranes is crucial, as it can undergo a transition into
collective behavior when the pore density is high. Inevitably,
there will be a trade-off between the physical dimensions of
these simulations and the time scales (and voltages) reachable.
Our finite-size scaling ansatz, eqn (9), gives a theoretical
approach to guide this trade off and determine the influence
of convergence.

Methods

We used NAMD262 to perform all-atom molecular dynamics
simulations with a 2 fs integration time step and periodic
boundary condition in all directions. The force field parameters
is rigid TIP3P63 for water and from CHARMM2764 for the rest of
the atoms. Short range electrostatic and van der Waals forces
have cutoff of 1.2 nm. However, full electrostatic calculation
occurs every 4 time steps using the Particle Mesh Ewald (PME)
method.
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I. METHODS

A. All-atom MD simulations

Our system consists of a single-layer graphene membrane with a pore in the center and

in 1 Mol/L KCl solution, as shown in Figure 1 of the main text. We build the system using

VMD 1.9.1 [1] and perform all-atom molecular dynamics simulations using NAMD2 [2] with

periodic boundary condition in all directions. The force field parameters are rigid TIP3P [3]

for water and CHARMM27 [4] for the other atoms. We fix the outer edge of the graphene

membrane but the bulk of the membrane has no confinement other than the C-C bonds of

graphene. The simulations have an integration time step of 2 fs and Langevin damping of

0.2 ps for only carbon and water (via its oxygen atoms). Non-bonded interactions (van der

Waals and electrostatics) have a cutoff of 1.2 nm. However, full electrostatic calculations

occur every 4 time steps using the Particle Mesh Ewald (PME) method. We first minimize

the energy of the system for 4000 steps (8 ps) and then heat it to 295 K in another 8 ps.

A 1 ns NPT (constant number of particles, pressure and temperature) equilibration using

the Nose-Hoover Langevin piston method [5] – to raise the pressure to 101 325 Pa (i.e., 1

atm) – followed by 3 ns of NVT (constant number of particles, volume and temperature)

equilibration generates the initial atomic configuration. An electric field perpendicular to

the plane of the membrane (1 V potential difference) drives the ionic current through the

pore.

B. Pore radius

We consider three pore sizes with effective radius a = 0.49 nm, a = 1.18 nm, and a = 1.81

nm, as shown in Figure S-1. Geometrically, the radius of the pore can be defined as the

average distance between the center of the pore and the pore atoms at the edge minus the

van der Waals radius of carbon (0.17 nm), i.e., the average distance between the center

of pore and edge of the carbon atoms. However, the radius of the accessible area for the

transport of ions is about 0.2 nm smaller than rp, as shown in Figure S-2. The exclusion

near the pore edge is due to van der Waals (vdW) repulsion (i.e., the finite ion size since we

already account for carbon’s vdW radius) and dehydration. Thus, we define the effective

2
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FIG. S-1. A 6 nm × 6 nm section of the graphene sheet showing the pores with effective radii (a)

a = 0.49 nm, (b) a = 1.18 nm, and (c) a = 1.81 nm. We construct the pores by removing all carbon

atoms within 0.8 nm, 1.5 nm, and 2.2 nm, respectively, of the pore center and also removing any

dangling bonds. The geometric definition of the pore radius, rp, is the average distance between

the center of the pore and the inner edge of the pore atoms (i.e., carbons with a size given by their

vdW radius). However, the effective pore radius, a, is about 0.2 nm smaller than rp due to the

finite size (hydration and vdW radii) of the ions. The schematic view here is in agreement with the

statistical view of ion crossings, see Figure S-2, with the exception of some minor contextual issues

arising from the pore atomic structure (e.g., the ion crossings have a clear hexagonal symmetry).

radius, a of the pore as

πa2J̄ =

∫ rp

0

J(ρ)2πρdρ, (1)

where J(ρ) is the current density at radial coordinate ρ (assuming cylindrical symmetry,

which is reasonable for graphene pores but not perfect – relaxing this would require much

longer simulations to acquire sufficient statistics on the angular dependence of ion crossings)

and J̄ is the average current density in the region of the pore where J(ρ) is flat. This

calculation is essentially weighing the area contributions by the Boltzmann factors at that

location, except we use the out-of-equilibrium probability distribution of ion crossing events

instead of the Boltzmann factors from the free energy barriers. The quantity J̄ serves the

role of an “unattenuated” current density – i.e., the current density where there is no excess

free energy barrier. We note that fluctuations of the graphene membrane, specifically around

the pore edge, also affects the pore size and its effect is included in Eq. (1).
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FIG. S-2. Current density of K+ and Cl− crossing pores with radii (a) a = 0.49 nm, (b) a = 1.18

nm, and (c) a = 1.81 versus the cylindrical coordinate ρ =
√
x2 + y2. The top panels show

scatter plots of ion crossings in the xy-plane. The circles indicate rp – the geometric pore radius

– which is about 0.2 nm bigger than the radius of the accessible area, as seen by the gap in

the ion crossing events. The bottom panels show variation of current density J , normalized by

“unattenuated” current density J̄ , with radial coordinate ρ inside the pore. The black arrows show

the effective pore radius from this distribution of J . Error bars are ±1 standard error from six

parallel simulations.

C. Error analysis for convergence in time

We compute the error in the MD results using the block standard error (BSE) method

[6]. We divide a single MD run of duration T into number of contiguous blocks of equal

duration τ . The BSE is given by

BSE =
sτ
√
τ√
T
, (2)

where sτ =
√∑

i(〈Iτ 〉i−〈IT 〉)2
(Nb−1) is the standard deviation of the mean current 〈Iτ 〉, within each

of the Nb blocks. The error bars in the plots are ±1 BSE unless otherwise noted.
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FIG. S-3. Maxwell-Hall form of the access resistance fitted for L = 8.4 nm, L = 9.6 nm, and

L → ∞ (extrapolated resistance). Only when L → ∞ does the exact Maxwell-Hall form emerge

for the access resistance, i.e., a coefficient of 1 times γ/2a. The error bars are ±1 BSE.

II. FINITE-SIZE SCALING

As mentioned in the main text, if all the linear dimensions of the cell (experimental

or theoretical) are simultaneously taken to be large, the normal bulk component of the

resistance will vanish and the measured resistance is expected to take on the form

R∞ =
γ

2a
+
γhp
πa2

(3)

in the continuum limit and assuming a cylindrical pore of height hp. R∞ can be found by

using the finite-size scaling

R =γ

(
H

GL2
− f

GL

)
+R∞, (4)

where GL2 is the cross-sectional area of the cell, L is the cross-sectional length, G is a

geometric factor (G = π/4 for a cylindrical cell and G = 1 for a rectangular cell), and f is

the fitting parameter.

In Figure S-3, we fit a modified form of Eq. 3 for L = 8.4 nm, L = 9.6 nm, and L→∞,

RL =
bLγ

2a
+
hLγ

πa2
, (5)

where bL and hL are the fitting parameters. For L = 8.4 nm and L = 9.6 nm, the access

resistance is larger than the Maxwell-Hall form due to the unbalanced dimensions of the

cell and the cell’s relative size compared to the differing pore radii. Only when L → ∞ do

we get exactly the Maxwell-Hall value. Also, the fitted value of the membrane thickness is

≈ 1.2 nm. This is consistent with the separation of ion density peak on the two sides of the

graphene membrane (i.e., the charge dipole layer separation), as seen in Figure S-4.
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FIG. S-4. (a) K+ and Cl− ion densities, and (b) net charge density when a 1 V voltage is applied

across a graphene membrane with a radius a = 0.49 nm pore. The peak of K+ ion concentration

is closer to the graphene membrane than that of Cl− due to smaller ionic size of the former. The

z distance between the two peaks is about 1.5 nm. The error bars are ±1 standard error from six

parallel simulations.

III. ELECTRIC FIELDS AND CURRENT DENSITY

We calculate the electrostatic potential and the charge density using the VolMap plugin

of VMD. The current density is the average ion displacement between the snapshots (10 ps)

over the length of the simulation,

~J(~r) =

∑
i qi~vi(~r)

dV
, (6)

where the sum is over all the ions within the volume element dV (with dx = dy = dz = 0.1

nm) at position ~r.

Figure S-5 shows the flow pattern for three different cell cross sections with a pore radius

a = 1.18 nm. In each of them, the current density J quickly orients along z-axis. It is also

seen from Fig S-5 that J decreases with A = GL2, which can be understood by looking at

the average value of Jz according to our model,

〈Jz〉 =
V

RA
=

V

γ(H − fL) +R∞GL2
. (7)

IV. BULK RESISTIVITY

We calculate the bulk resistivity from our MD simulations using a cell without the

graphene membrane/pore. The standard value of the bulk resistivity is γ = 1/ne(µK+µCl) ≈

6
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FIG. S-5. The current density, J , showing the flow pattern for different cell cross sections from

MD simulations of a graphene nanopore with radius a = 1.18 nm. The flow quickly orients with

the z-axis away from the pore regardless of the cross-sectional area of the cell. Note that J is not

constant with L due to a changing balance of bulk and pore resistance.

67 MΩ·nm. The value from MD is γMD ≈ 70 MΩ·nm, as shown in Figure S-6. It is to be

noted that the actual value of resistivity of 1 M KCl at room temperature observed in ex-

periments is γexp ≈ 90 MΩ·nm. At the high concentration of KCl (such as 1 mol/L), the

conductance deviates from the linear expression, γ = 1/ne(µK + µCl). However, the MD

results give the conductance according to the linear expression.

In Figure S-7 we plot the potential drop along the z-direction when 1 V potential is applied

across the graphene membrane. At larger distances, ∆z, from the pore, the potential drop,

∆V , is proportional to the bulk resistivity γ, since

∆V = I∆R =
Iγ∆z

A
, (8)

where ∆R is the resistance of the region away from the pore.
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for a = 0.49 nm (red line) and radius ρ = 2 nm for a = 1.18 nm (green line). The slope of potential

drop is constant and equal to bulk resistiviy beyond |z| & L/2 (with L = 9.6 for a = 1.18 nm and
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data markers.
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