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Simulations are increasingly employing explicit reservoirs—internal, finite regions—to drive elec-
tronic or particle transport. This naturally occurs in simulations of transport via ultracold atomic gases.
Whether the simulation is numerical or physical, these approaches rely on the rapid development of
the steady state. We demonstrate that steady state formation is a manifestation of the Gibbs phe-
nomenon well-known in signal processing and in truncated discrete Fourier expansions. Each particle
separately develops into an individual steady state due to the spreading of its wave packet in energy.
The rise to the steady state for an individual particle depends on the particle energy—and thus can
be slow—and ringing oscillations appear due to filtering of the response through the electronic band-
width. However, the rise to the total steady state—the one from all particles—is rapid, with time scale
⇡/W, where W is the bandwidth. Ringing oscillations are now also filtered through the bias window,
and they decay with a higher power. The Gibbs constant—the overshoot of the first ring—can appear
in the simulation error. These results shed light on the formation of the steady state and support the
practical use of explicit reservoirs to simulate transport at the nanoscale or using ultracold atomic
lattices. https://doi.org/10.1063/1.5061759

An increasing number of nanoscale electronic1–6 studies
aim at probing and exploiting dynamical phenomena at both
slow and fast time scales.7–17 Moreover, finite, closed ultra-
cold atomic systems18,19 simulate transient transport20–28 and
can examine the generation of topological matter via time-
dependent fields.29,30 An avenue to computationally study
transient and dynamical phenomena is to include particle
reservoirs explicitly in the simulation, essentially letting a
“capacitor” discharge and drive current through a region
of interest.31–49 The inclusion of relaxation can give a true
steady state while still permitting the examination of tran-
sient/dynamical processes50–52 (including for thermal trans-
port53–55). This type of “open” system approach has a long
history56,57 (see discussion in Ref. 52), including designs
for time-dependent density functional theory (TD-DFT).58–60

However, large-scale numerical simulations (e.g., integrating
correlation matrices, numerical renormalization and tensor
network methods, TD-DFT, or other techniques) generally do
not give direct insight into the formation of the steady state
and the factors controlling transient behavior.

Here, we employ a Kubo approach to study transients in
closed, noninteracting fermionic systems. We demonstrate its
application using a system set out of equilibrium by connect-
ing initially disjoint lattices, see Fig. 1, a technique related to
the tunneling Hamiltonian and Green’s function approaches
to transport. We show how the steady state arises, how oscil-
lations decay, and how different frequency scales contribute
to transport, as well quantify aspects of simulation error. We
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expect that this approach will find application in dynamical,
many-body transport in both nanoscale and ultracold atomic
systems, including diagnosing pathological numerical setups
and increasing simulation efficiency.

Before the lattices come into contact (i.e., for times
t < 0 in Fig. 1), the Hamiltonian is

H0 = HL + HR (1)

with
HL =

X

k2L
~!ka†kak , HR =

X

k2R
~!kb†kbk , (2)

where a†k (ak) and b†k (bk) are the fermionic creation (annihi-
lation) operators on the left (L) and right (R), respectively.
These are noninteracting lattices with NL(R) levels and fre-
quencies !k . The initial state is one with a density imbalance,
where the left region has particles up to the chemical potential
µL and the right to µR. This drives the current when, at t = 0,
the perturbing Hamiltonian

H 0 =
X

k2L,k0 2R
~vkk0
⇣
a†kbk0 + b†k0ak

⌘
(3)

connects the two lattices, as shown in Fig. 1. The strength of

the connection is the total hopping frequency v =
qP

k,k0 v
2
kk0 ,

which we will treat as a perturbation. The density imbal-
ance encodes the chemical potential in the initial state, mak-
ing the calculations non-perturbative in the bias61 (unlike,
e.g., Refs. 77–79, which employ numerical renormalization
in tandem with a Kubo approach with the applied bias as the
perturbation). We can relate this to a real-space model with
contact at, e.g., one site via the identification c1 =

P
k U1kak ,

d1 =
P

k V1kbk , and vkk0 = v U?
k1V1k0 , giving the connection
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FIG. 1. Schematic of a lattice set out of equilibrium by adding a link at time
t = 0 between two initially disconnected regions L and R. There is a density
imbalance (black line) that creates a chemical potential drop µL � µR (alter-
natively, there can initially be a uniform potential and a bias simultaneously
turns on when connecting the lattice). The current, I, is the step response to
the addition of the link (green) filtered by the electronic bandwidth and bias
window.

~v
⇣
c†1d1 + d†1c1

⌘
. Here, the quantities U and V are the trans-

formation matrices from energy- to real-space on the left and
right lattices.

We will apply the Kubo formula

hO(t)i = hOi0 � ı
⌅ t

0
dt 0h⇥O(t), H 0

�
t 0
�⇤i0 (4)

for the observable O, where O(t) = eıH0tOe�ıH0t is an oper-
ator in the interaction picture and hOi0 indicates an average
with respect to the initial state. While our focus is on closed,
finite systems, we will take the infinite system limit to make
some expressions more transparent. This will not obscure their
interpretation for finite systems.

The particle current from the left to right is

I(t) = �hdNL/dti = �2
X

k,k0
vkk0=ha†kbk0(t)i (5)

for t � 0. Here, NL is the number operator in the Heisenberg
picture on the left, dNL/dt = �ı[NL, H0 + H 0], and the factor
of 2 appears due to taking the imaginary component = (i.e.,
not due to spin). Applying Eq. (4) to a†kbk0(t) yields

ha†kbk0(t)i = �vkk0(nk � nk0)
eıt(!k�!k0) � 1
!k � !k0

, (6)

where nk are the initial particle occupancies and we use that
ha†kbk0 i0 = 0 for two initially disjoint lattices. The total current
from this perturbative result is thus

I(t) = 2
X

k,k0
v2kk0(nk � nk0)

sin[(!k � !k0)t]
!k � !k0

. (7)

So far we only assume that the two lattices are initially dis-
connected and have occupancies from their separate single-
particle eigenstates.

Let us first examine the current, Ik(t), from a particle in
state k on the left going into an empty reservoir of bandwidth W
on the right. Setting vkk0 = v/

p
NLNR—i.e., a flat band—and

taking
P

k0 1/NR!s d!/W give

Ik(t) =
2v2

NLW

⌅ W/2

�W/2
d!0

sin[(!k � !0)t]
!k � !0

. (8)

When t ! 1, the integrand approaches ⇡�(!k � !0), express-
ing conservation of energy in the absence of inelastic processes
and in the long-time limit. This indicates the presence of
a steady state current of 2v2⇡/NLW even if NL = 1 (and,
since there is only one particle, it can be a fermion or a mas-
sive boson). However, the perturbative expression does not

capture that there is a decay time62 T? = NLW/2v2⇡. For
times much shorter than this, the particle looks to be in a steady
state. This demonstrates that constructive contributions from
many incoming particles are not necessary for steady state for-
mation, but rather it is the spread of a single particle into many
different states—its wave-like nature in energy space—that
results in a nearly steady current. Since only a single particle
is present, the steady state is just a linear increase in time of
the probability for the particle to be in R, which is possible to
measure in cold atom lattices by repetition of the experiment
many times.

For finite times, the integral in Eq. (8) is just

Ik(t) =
2v2

NLW
{Si[t(!k + W/2)] � Si[t(!k �W/2)]}, (9)

where Si[�] is the sine integral. The derivative dI/dt |t=0 deter-
mines the rise to the steady state. For the single particle,
this depends on the smaller of the two energies, |!k + W/2|
or |!k �W/2|. For instance, for !k = 0, the initial (linear)
rise occurs with slope 2v2/NL. Thus, the time to reach the
steady state value, 2v2⇡/NLW , is ⇡/W, at which time the cur-
rent begins oscillating. If !k (in L) approaches the band edge
(in R), then the steady state takes a long time to develop. In
that case, there is a fast process—where one of the sine inte-
gral quickly rises—and a slow process—where the other rises
with time ⇠ 1/(W/2 � |!k |). After the initial rise, oscillations
appear, which decay as the steady state is approached. Such
oscillations are seen in extended reservoir, microcanonical,
and related approaches, in addition to numerical integration of
the time-dependent Green’s functions.81

For!k = 0, the rapid rise and “ringing oscillation” is none
other than the Gibbs phenomenon63–67 for the step function
sign[t] sent through a low-pass frequency filter. The Fourier
transform of sign[t] is ı

p
2/⇡/!. Filtering the frequencies out-

side of the bandwidth [�W/2, W/2] and taking the inverse
transform give Eq. (8) up to a prefactor.68 The oscillations
are thus an inherent aspect of electronic transport. Moreover,
the “overshoot” of the current—its first and maximum oscil-
lation overtop the steady state value—is G·2v2⇡/NW, where
G = 2Si[⇡]/⇡ � 1 = 0.1789 . . . is the Gibbs constant. That is,
the overshoot is about 18% higher than the steady state value.
Regardless of the bandwidth, the magnitude of the overshoot—
and, indeed, the dimensionless form of the current—stays the
same. When examining!k , 0, these basic insights remain but
now the filter acts asymmetrically, introducing oscillations that
depend on both W and !k . Different spectral densities of the
reservoirs and strong coupling will give different overshoot
values. However, the physical process is universal, and the
signal is filtered through the bandwidth giving rise to ringing
oscillations.

We now examine the total current in the presence of a
chemical potential drop. Considering the flat band case and
equal bandwidths in L and R, the continuum limit of Eq. (7)
gives

I(t) =
⌅ W/2

�W/2
d! �I(!, t), (10)

where the contribution to the current at frequency ! in L is
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�I =
2v2

W2

⌅ W/2

�W/2
d!0
⇥
nL(!) � nR

�
!0
�⇤ sin[(! � !0)t]

! � !0 . (11)

We now explicitly label the occupancies nL(R). The steady
state current is 2⇡v2µ/W2 for a chemical potential drop of
µ = µL � µR. Equations (10) and (11) show that, to highest
order in v , there is a one way flow from filled states on the left
into empty states on the right lattice when µL > µR. Indeed,
as with Eq. (8), states at frequency ! go into states !0 = ! as
t ! 1, giving the standard bias window.

Taking µL = µ/2, µR = �µ/2, and performing the
integrations at zero temperature (so nL(R) = 0 or 1) yield

I(t) =
2v2

W2

8>><>>:
X

±
±(W ± µ)Si

 t
2

(W ± µ)
�

+
4 sin

f
Wt
2

g
sin

f
µt
2

g
t

9>>=>>;
(12)

⇡ 4v2

W2
Si[Wt/2]µ, (13)

where the second expression is for a small bias, showing
exactly the same manifestation of the Gibbs phenomenon as
the individual particles at the Fermi level. Figure 2 shows
the Kubo result, Eq. (12), together with the exact result for
a finite system, as well as the steady state value and ini-
tial rise. Just like individual particles at the Fermi level, the
total current rises with time ⇡/W. Unlike individual parti-
cles, this result is nearly true even when a small frequency
scale appears in Eq. (12), e.g., (W � µ) for a chemical poten-
tial drop comparable to the bandwidth. The component with
the small frequency scale takes a longer time to reach its
steady state, but it appears with a prefactor that is also the
small frequency scale. Hence, while it takes time to rise, it

FIG. 2. Current through a weak link when density-imbalanced flat band lat-
tices come into contact. The blue line (black squares) shows the Kubo (exact)
result for � = W · 10�3, µ = W /10, and NL(R) = 100. The red dotted line is the
steady state current, and the green dashed line the rise to the steady state at
time ⇡/W. Since this is a finite system, the resultant current goes into a “quasi”-
steady state. The inset shows the forward, IL [nk = 1 and nk0 = 0 in Eq. (7)],
and backward, IR [nk = 0 and nk0 = 1 in Eq. (7)], currents. These have signif-
icantly larger transients but they partially cancel, leaving more regular—but
algebraically decaying—oscillations in I. A true steady state will form when
N ! 1 and then t ! 1.

has a small contribution to the total current. As a separate
note, the convergence to the infinite system limit is non-
monotonic purely due to the discrete nature of the states and
filling,69 which gives insight into behavior observed compu-
tationally in density functional theory calculations.80

We can also examine the contribution to the current
from different frequency scales on the left, Eq. (11). All fre-
quency scales contribute to the current for short times, see
Fig. 3(a), but this contribution decays with both frequency
and time. By t = 4·2⇡/W, the contribution is small outside
the bias window and, as time progresses, it takes on the form
of the bias window, Fig. 3(b) (the contributions reflect the
band structure/couplings and thus are flat for the flat band
model). When solving problems numerically, one reduces con-
tinuum reservoirs/environments into a finite, discrete number

FIG. 3. Current contribution, �I, from different frequencies inL. (a) Initially,
all states contribute substantially to the current, but contributions above and
below the Fermi level partially cancel, see IL and IR in the inset of Fig. 2. (b)
Contributions to the current for times t indicated on each panel. As t ! 1, the
contributions approach the red dashed line, with vanishing values outside the
bias window, �µ/2  !  µ/2. The oscillatory features on the left side of the
bias window reflect the occurrence of Gibbs phenomenon. These oscillations
do not disappear but rather get squeezed toward the jump at the bias window
edge. No oscillations exist on the positive side due to the nature of that edge
(a cutoff from the Fermi-Dirac occupation).
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of components. The decay of the contribution with frequency
(outside the bias window) suggests routes to alternative coarse
grainings in frequency to enhance the simulation efficiency, as
done in Ref. 70. The influence of different frequency scales
will ultimately depend on details of the model (e.g., the pres-
ence of interactions), but we expect that the Kubo approach
will help reveal the errors incurred by various coarse grain-
ings. We leave this for future studies and instead focus on
errors in estimating the steady-state value of the current.

The rise time of the current is rapid, indicating that already
for small system sizes and times one can get a reasonably
accurate value of the steady-state current (in the model here,
taking the first maximum as an estimate of the steady-state
current would only give a relative error of G, about 18%).
The slowly (algebraically) decaying nature of oscillations,
though, influence the accuracy of further simulation. From
Eq. (12), the asymptotic decay of the current to its steady state
is71

� 1
t2

2v2

W2

8W cos
f

Wt
2

g
sin

f
µt
2

g
� 8µ cos

f
µt
2

g
sin

f
Wt
2

g
W2 � µ2

, (14)

compared with

� 1
t

2v2

NLW

W cos[!kt] cos
f

Wt
2

g
+ 2!k sin[!kt] sin

f
Wt
2

g
(W/2)2 � !2

k

(15)

from Eq. (9) for a single particle going into an empty
band. Both expressions are in the long-limit compared to all
other time scales (namely, 1/µ and 1/!k , as well as 1/W ).
In the case of an infinitesimal bias (1/µ!1 before the
long time limit), one also gets oscillations that decay as 1/t
[specifically, �4u cos(Wt/2)/Wt, as with the single particle at
!k = 0].

To obtain the steady state current, one has to deal with
finite size and finite time issues, including both real physical
effects (such as the decaying oscillations here) and artifacts
(such as persistent oscillations due to finite lattice sizes46). One
can remove persistent oscillations seen in impurity problems
by fitting,46 reducing one source of uncertainty but there are
still other finite-size errors. In the case here, fitting the decay-
ing envelope of the oscillations to 1/T will give an accurate
estimate of the steady state current. However, complex models
will have much more complicated dynamics with oscillations
at many time scales and amplitudes, and potentially with a
different decay in time. Fitting, finding a bisecting line, or
enveloping oscillations will be difficult to implement when
the oscillations and decay are more irregular (although, 1/T
behavior may be quite common72,73). We thus assess “model
agnostic” strategies—strategies that do not require specific
knowledge of the model under study—to obtain the value of
the steady state current that remove finite time effects, the ones
shown to be limiting in related contexts.72

Two agnostic strategies for estimating the steady state cur-
rent from a closed, finite-sized simulation are to (1) take the
value of the current at the end of the simulation or (2) average
the current over some region of time. These approaches some-
times serendipitously yield the exact current. Thus, we will
work either with error envelopes, i.e., the smooth curve going
through the set of maxima in the error versus time, or with

asymptotic forms for the error decay. Considering the relative
error, 1 � Isim/Iexact with Isim the current from simulation and
Iexact the exact current, strategy (1) gives

8
⇡µWT2

(16)

for the error envelope. Here, T is the total simulation time and
we took T ! 1 and then µ! 0 (taking the limit µ! 0 and
then T ! 1 gives a leading 1/T decay in the oscillations and
error74). For (2), the estimate is

Isim =
1

T � T0

⌅ T

T0

I(t)dt. (17)

Compact forms for the relative error follow from integrating
this equation with I(t) from Eq. (10). To simplify calculations,
we can work with the small bias expression directly in the case
of strategy (2), as the average in Eq. (17) will have a dominant
error due to short time contributions. The error will thus decay
as 1/T so long as T0 is not too large (i.e., either T ! 1 and
then µ! 0, or the reverse, will do).

Figure 4(a) shows the relative error versus T and T0 for
strategy (2). The minimum error comes at approximately inte-
ger multiples of 2⇡/W for T0—at oscillatory extrema of the
current—for any value of T. Indeed, the asymptotic error decay
(first T ! 1 and then T0 ! 1)

�����
8 sin(T0W/2)
⇡W2TT0

����� (18)

has minimal error exactly when T0 is an integer multiple of
2⇡/W. The reason for this is that the integration in Eq. (17)
accumulates excess error [e.g., I(t) > Iexact] before encoun-
tering terms [e.g., I(t) < Iexact] that cancel that excess. The
maximal cancellation of errors occurs when T0 is at multiples
of 2⇡/W. If T � T0 is a multiple of 4⇡/W (i.e., a complete
oscillation), then there are saddle points on the error manifold
when T0 is at odd multiples of ⇡/W, but moving T0 toward
the extrema (holding T constant) decreases further the error.
Figures 4(b) and 4(c) show the error decay for different T0 and
the coefficient of the decay versus T0. The asymptotic coef-
ficient qualitatively captures even the non-asymptotic regime.
For small T0, though, the coefficient can be off in relative
terms, which is not apparent on the scale of Fig. 4(c): Com-
paring Eq. (18) with T0 = 2⇡/W to the actual decay, 2(2 �
⇡2G)/⇡WT, for large T but not large T0, it is clear that the
actual coefficient of the decay is due to early time behavior
(and hence why Gibbs’ constant appears). It is the initial error
that slowly decays away as T increases in the integration that
plays the important role.

Given that strategy (2) has error decaying as 1/T and
(1) as 1/T2, the latter is better for long simulations. How-
ever, in practice, large systems and times are inaccessible,
i.e., simulations are typically in the range of 10–100 natu-
ral time units.23,27 Thus, the coefficient of the decay matters.
Since strategy (1) has higher error for small T, there is a
crossing time when strategy (1) becomes better than (2). This
crossing time is much greater than 100·2⇡/W except for T0
= 0, for which it comes at about 60·2⇡/W. Thus, averaging
within a window (with T0 at an extremum) is generally a
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FIG. 4. Relative error of the estimate [Eq. (17)]. (a) Error versus T and T0. For
a given total simulation time, T, the error has minima when T0 is approximately
integer multiples of 2⇡/W. For long times (both T and T0), the oscillations
that can be seen on the 2D projection smooth to flat lines and the minima
approach these values. (b) Error versus T for T0 = 0, ⇡/W, and 2⇡/W (red,
blue, and green solid lines, respectively). All of these decay as 1/T for large
T, shown by the asymptotic forms (dashed lines with the same colors). If T0
is set to 3⇡/W (in between extrema), the error will be substantially larger than
when it is 2⇡/W (at an extremum). (c) Error normalized by 1/T. The blue line
(black circles) shows T = 20 · 2⇡/W (200 · 2⇡/W ). The black dashed line
shows the asymptotic result, Eq. (18). So long as both T and T0 are large
enough, the asymptotic result captures the relative error. The minima in this
limit are exactly at integer multiples of 2⇡/W for T0 regardless of T (including
non-integer multiples of 2⇡/W ).

better strategy. While these results are for the specific model
under study, many-body systems can display the same decay-
ing oscillations,23,27 including quantitatively in a large regime
of many-body interaction induced transport23 (which shows
the Gibbs phenomenon and rapid development of the steady
state). Indeed, we closely followed (2) for many-body trans-
port simulated with matrix product states,27 albeit empirically
determined.

We emphasize that strategy matters, as even if the goal
is only moderate accuracy (e.g., 1%), different strategies can
mean orders of magnitude longer simulations requiring an
order of magnitude larger system, as the maximum simulation
time75 is proportional to N. If the computational cost scales as
TNp, where p � 1, then a 10 times longer simulation will mean
at least a 100 times the computational cost.76

The Kubo approach here elucidates the physics behind
the development of the steady state and transient oscillations.
These oscillations are none other than the Gibbs phenomenon

due to the filtering of the current through the electronic band-
width and bias window. Unlike the original context of the
Gibbs phenomenon63–67 (and in filtering signals), the ringing
oscillations are not artifacts, but physical. For individual parti-
cles, the quasi-steady state is a manifestation of the wave-like
nature of particles. However, for many particles, the current
will near its steady state value in time ⇡/W. This is why tensor
network simulations of the current obtain reasonable results
even for quite small simulations. We expect that the Kubo
approach will assist in understanding other features of simula-
tions, providing general guidance and informing new strategies
for enhancing efficiency.

We thank J. Elenewski, M. Ochoa, S. Sahu, C. Rohmann,
and P. Haney for helpful comments.
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