Secondary—structure clustering of nucleic acid melting: Pseudo—random DNA
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Biomolecular structural disorder can occur at all levels, from atomistic and secondary structures
to tertiary formations and complexes. This disorder poses challenges for characterizing biomolecular
behavior and function, as well as predictions, especially with all-atom models. Mapping atomistic
or coarse—grained ensembles to secondary structures, though, removes entropic disorder due to
flexible regions and atomic motion. What remains is a set of secondary structures with probabilities
modified by the discarded atomistic configurational entropy. We further develop clustering based on
this insight and apply it to the melting of pseudo-random, single-stranded DNA. Even without a
well-defined fold, secondary—structure clustering, here using k—means, identifies order via common
hybridization patterns. This includes a residual stem feature at high temperature with a probability
following a Boltzmann factor. Moreover, we show how the evolution of clusters versus conditions
helps refine the coarse graining of the structural space, supporting a view that clustering needs to
capture the flow of information during a physical process. Overall, this method clarifies behavior
during melting and advances the conceptual foundation of clustering. Its ability to perform despite
disorder suggests it could be useful in other contexts, such as for intrinsically disordered proteins.

I. INTRODUCTION 's{\cgnsemble Centroids
N
Nucleic acid secondary—structure motifs and ensembles
are essential for many biological functions, such as ri- Adenine
bozyme activity and riboswitching [1-3]. They also play Thymine
a key role in drug development targeting RNA [4-8]. Asa Cytosine

result, substantial efforts have went into RNA secondary—
structure prediction [9-15], including comparisons with
experiments such as selective 2’-hydroxyl acylation an-
alyzed by primer extension (SHAPE) [16, 17], dimethyl
sulphate (DMS) [18, 19], and nuclear magnetic resonance
(NMR) [20, 21]. Additionally, single-stranded DNA fold-
ing can alter assembly in bottom—up fabrication [22-26].

Predictions often directly use secondary—structure
models—e.g., Ising-like models. These can produce a
minimum free energy (MFE) structure as the expected
fold [9, 11, 13] or directly target ensemble-level infor-
mation, e.g., maximum expected accuracy [14, 15]. In
the context here, Ding et al. developed statistical sam-
pling and clustering to identify relevant folds within the
ensemble, where the MFE may not always be the most
representative [27-30]. Alternatively, deep learning coun-
terparts both within the same thermodynamic frame-
work [31] and outside of it [32, 33], are rapidly advancing.

Yet, there are many challenges. These include predict-
ing structural response to cellular conditions in drug tar-
geting [4-8], the role of dynamical factors in folding [34],
and how competition with other nucleic acid species influ-
ences self-assembly [23-26]. All-atom molecular dynam-
ics can address these challenges and has undergone exten-
sive development for RNA dynamics and folding [35-37].
Some tools from secondary—structure prediction have not
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FIG. 1.
structure clustering of atomistic (here, coarse—grained atom-
istic) configurational ensembles. The centroids are from k—
means with k& = 2 near the melting temperature where the
clusters have nearly equal probability. Clustering helps iden-
tify important folds/motifs, as well as partitions the ensemble.

Clustering of melting. Schematic of secondary—

been incorporated into molecular dynamics. In particu-
lar, Ding et al. employ the base—pair distance for cluster-
ing to improve over MFE-based nearest-neighbor predic-
tions [28] and to characterize ensembles [30]. The base—
pair distance is also part of other secondary—structure
packages to help analyze structures [11, 29].

We develop secondary-structure clustering to analyze
molecular dynamics simulations. Specifically, we use the
base—pair distance to quantify the dissimilarity between
structures and drive clustering. This approach provides
a hierarchical view of the ensemble: it captures atomistic
details and response to molecular changes, while charac-
terizing ensembles at a higher structural level that re-
moves entropic disorder from flexibility. This provides
an algorithmic approach to identify structural motifs and
routes for assessing ensemble convergence and connecting
simulations with experimental observables.
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II. MATERIALS AND METHODS
A. Secondary structure distance

We employ a base—pair distance variant,
2 _1 i |2
dijzni—l—nj—Qnij:itr‘@ —@j| (1)
where the squared distance is the number of bases that
have to be broken and formed to convert between struc-
tures. We note that Ref. [28] employs a definition equiv-
alent to d;; = n; + n; — 2n;;.  Either definition fur-
nishes a distance metric. We consider Eq. (1) so that
k—means, which minimizes d?j, minimizes the expression
n; +n; — 2n;;, although clustering techniques that mini-
mize an L; distance could be an alternative, see Ref. [38]
for an extended discussion of this and the clustering
method here. This can be computed by taking the num-
ber of base pairs n; in structure ¢ and n; in j, and sub-
tracting twice the number of base pairs in common, n;;.
One can also employ the secondary—structure matriz ©°,

, 1 p paired with ¢ in 4
e = 2
pq {0 otherwise, 2)

and the Hilbert—Schmidt norm, |A|2 =tr ATA, for oper-
ator A. The matrix elements specify whether base p is
paired with g, where we consider only singly—hybridized
Watson—Crick pairs (thus, each row and column has at
most one non-zero entry). The matrix representation,
®?, is more readily generalizable to other biomolecules.

B. Clustering

For clustering, we will employ k-means [39, 40] with a
fixed k—a departure from normal practice—to a molec-
ular ensemble. Specifically, we will use a variant of k—
means that uses k—means++ [40] for initialization and
employ a physical ensemble member for the centroid [38].
We do £S = 500 independent clusterings, taking the one
that minimizes the objective function for the data set D,

0 =3 mind, (3)

i€D

via the set of centroids C = {cx|k =1,2,...,k}.

We treat k as a fine-graining parameter, rather than a
parameter that has to be heuristically optimized with an
elbow or some other analysis. With k£ = 1, the cluster is
just the whole ensemble, albeit having a single centroid
as its representative. The k = 1 cluster characteristics
will be the average ensemble properties, like (n;) or aver-
age radius of gyration. These are informative and often
directly connected to experimental measurements. Yet,
higher £ yield a more fine—grained view of the ensemble.
The ability to successfully process and leverage larger k
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FIG. 2. Melting. Ensemble average base pairing, (ns),

versus temperature. The barely visible shaded region rep-
resents the block standard error (BSE) [41]. The solid curve
is an interpolation with piecewise cubic Hermite polynomi-
als. The inset shows the first derivative of the interpola-
tion (red, dashed line). We use a bootstrap analysis to ob-
tain the melting temperature, T,, = (312 &+ 3) K (vertical,
dashed red line with shaded red uncertainty), from the peak
in the derivative of the interpolation. The transition width of
AT, = (19 +2) K (black, dotted lines with uncertainty not
shown) quantifies the sharpness of the melting. We define
this width via the intersection of a tangent at T}, with linear
fits to the low— and high—temperature baselines (i.e., the first
eight data points for low temperature and (n,) = 0 for high
temperature). The peak in d{n;)/dT for the interpolation and
the bootstrapped T,, have a small offset. The uncertainties
in T,, and AT, are plus and minus one standard deviation
within the bootstrapping realizations.

results determines their usefulness. This turns out to be
an involved process, where a host of factors influence clus-
tering quality. This includes usual issues with the number
of trials &S and dataset quality (molecular ensemble sam-
pling, in our case). It also involves some issues specific
to sweeps in variables, such as temperature, that revolve
around consistency and the flow of information. We will
focus on k = 2 here to address these issues.

To ensure robustness and consistency, we identify
two factors that are important: (1) The distribution of
equidistant structures and (2) centroid stability. In cases
where a structure is equidistant from both centroids, we
assign it to the cluster with lower occupancy to parti-
tion structures consistently across temperature. Other-
wise, the cluster probability can be noisy rather than
have smooth behavior as conditions change. For the sec-
ond factor, we use the centroid pairs (for k = 2) across
the whole temperature sweep as reference set. After an
initial clustering across all temperatures, we check each
temperature to see if the centroid pairs in this set lower
the cost function, Eq. (3). The rationale is as follows:
Clustering with k—means and some other methods is a
random process that will typically fall short of finding the
global optimum. Thus, there is some randomness built
in to the determination of centroids. Having S indepen-
dent clustering attempts to regularize this, but centroids



can still change from one temperature to the next due
to insufficient &S. This will create noise in both the cen-
troids themselves, their probability, and other character-
istics. Clustering at two nearby temperatures or other
conditions, however, effectively doubles the number of
independent clusterings %S, and even more when cluster-
ing many temperatures. Thus, there is more information
contained in a parameter sweep than just at the isolated
points. This is an expectation of continuity with the ex-
ception of phase transitions and sharp crossovers. Thus,
the algorithm should leverage this information. Overall,
this self—consistency improves cluster interpretability.

We will leverage that secondary—structure clustering
removes, by construction, atomistic disorder from struc-
tural flexibility, as well as fluctuations and vibrations
around bonds [38]. This is a feature that holds regard-
less of the clustering technique or molecular example un-
der study. In the context of k—-means, we observe two
useful features of secondary—structure clustering. One is
that the clusters have a connection to energetics. This
feature is not expected to hold with all clustering tech-
niques. For instance, density—based methods will likely
break connections to pathways and energies. Two, the
clustering provides an algorithmic, human—independent,
way to capture the melting and other processes. We ex-
pect this to generally hold true.

C. DMolecular Dynamics

We use clustering to study a pseudo-random DNA
sequence of 50 bases that is a fragment of the M13 bac-
teriophage [42, 43]. Its sequence is 5'~-GAATGATAAG-
GAAAGACAGCCGATTATTGATTGGTTTCTACAT-
GCTCGTA-3'. To generate the ensemble, we use a
coarse-grained DNA model, oxDNA [44, 45] imple-
mented as CGDNA [46] in LAMMPS [47], and perform
extensive replica exchange molecular dynamics (REMD)
simulations across a range of temperatures at very fine
temperature increments, chosen to ensure accurate sam-
pling of melting transitions in nucleic acids. As in typical
REMD, we employ an inhomogeneously (exponentially)
distributed grid in order to get homogeneous exchange
frequencies across neighboring temperatures,

T, :Tmin'e/\.(ril) r= 1727"'7NT7 (4)

where T, is the temperature for replica r, Ty, = 250 K,
Tax = 485 K, and N,. = 40 is the total number of repli-
cas. The constant A = [1/(N, — 1)]In (Tmax/Tmin), €n-
sures the last replica temperature is exactly Tiax-

We note that, since this model has a continuum sol-
vent, we examine its behavior below and above physically
relevant temperatures. This enables obtaining a more
complete understanding of behavior and clustering per-
formance. The REMD simulation is run for 64 x 107 steps
with an exchange attempt frequency (EAF) of 0.02 per
step, i.e., one every 50 steps, which corresponds to one
exchange attempt per =~ 85.3 ps. We set the continuum
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FIG. 3. Secondary-structure clustering. (a) Average
number of base pairs, (ny)«, in cluster kK = 1, 2 (red, teal)
versus temperature. (b) The cluster probabilities, P, versus
temperature. The vertical lines indicate the melting tempera-
ture (dashed red with the shaded red uncertainty), transition
width (black dotted), and the region with insufficient sam-
pling to cluster properly (blue dotted). The teal star marks
the end of a stable clustering regime, see Fig. 4, where the
lower cluster now has a frayed end to absorb ensemble diver-
sity. A cluster with the same centroid reappears post—melting
with about 8 base pairs on average. This cluster’s probability
follows Eq. (10) (inset). A fit gives A = (—1.00 £ 0.02) eV as
the free energy change from the unfolded state as a reference
and Ny = 25.5 & 0.6 as the number of bases with restricted
entropy in the stem region. The uncertainties for A and Ny,
are plus and minus one standard error of the fit. This A is
reasonable value for structures with about six base pairs and
a couple additional pairs that are mismatches, as is N given
that 16 bases are locked in pairs on average and more are re-
stricted in the stem.

dielectric to approximate 0.5 mol/L NaCl. We randomly
sample 100 k structures for each r to form the clustering
data sets, D, giving a total of 4 M structures across 40
replicas. We employ the base pairing criteria of Ref. [38].

III. RESULTS AND DISCUSSION

Figure 1 shows the folded and unfolded ensemble cen-
troids. Figure 2 quantifies the transition by showing the
average number of base pairs as a function of the replica
temperature, yielding the full melting profile. As temper-



250 K to 281.6 K 286.4 K to 296.3 K 3014 K

C1

C2

306.6 K 311.8 K 317.1 K to 345.3 K

FIG. 4. Secondary—structure centroids. From left to right, the centroids versus increasing temperature, as labeled above
each centroid pair ¢, with k = 1, 2. The centroids remain constant across many ranges of temperatures, displaying a continuity
in the flow of information during the melting process. From 250 K to 281.6 K, the centroids are both mostly folded. As
temperature increases, though, the ensemble diversity increases. Eventually, the clustering changes (marked by a teal star in
Fig. 3), with the lower probability cluster absorbing the diversity. This gives a stark change of its centroid to a frayed structure.
While conforming to typical melting paradigms, what is happening is more intricate: k—means identifies the frayed structure
because it has the most common motif to what is otherwise still a well-folded cluster, as seen by the average number of base
pairs in Fig. 3a. This centroid evolves to the unfolded state before reappearing as a persistent stem feature at high temperature.
The centroids for replicas above about 350 K are shown in the SI, as this region is insufficiently sampled to properly cluster.

ature increases, there is a moderately sharp decrease in
base—pairing at the melting temperature, T;,. The min-
imum in the first derivative yields T;, = (312 +3) K
as displayed in inset. This value and its uncertainty
are from bootstrapping over 10 k noisy realizations of
the melting curve. We determine the transition width,
AT, = (19£2) K, from the bootstrapping calculation via
the intersection of the tangent at T}, with the low— and
high—temperature baselines. All quoted uncertainties for
T,, and AT,, correspond to one standard deviation from
the bootstrap realizations of the melting curves.

We now employ k—means to the melting transition.
Figure 3 shows the evolution of the average number of
base pairs and the probability of each of the two k = 2
secondary—structure clusters as the pseudo-random DNA
melts. Cluster 1 (red, more occupied) and cluster 2 (teal,
less occupied) are two folds around a similar stem but
with different hairpin and internal loop motifs, see the
centroids in Fig. 4. They have a d?j of 5. At low temper-
ature (250 K to 281.6 K), these centroids stay constant.
While most of this regime is below physically relevant
temperatures, the continuity of the centroids reflects a
stable structural regime. Moreover, algorithmically, em-
ploying the reference centroid set (i.e., cross checking
centroids from different temperatures to see if the cost
function decreases) and consistently assigning equidis-
tant structures were both necessary to identify this stable
regime. Otherwise, there will be noise, e.g., in the cluster
centroid and probability, making it more difficult to iden-
tify a meaningful structural partitioning of the ensemble,
see the Supplemental Information (SI). While a larger S
can alleviate the need for cross—checking, it doesn’t make

maximal use the information already extracted from the
parameter sweep, nor does one know a priori how large
S needs to be. Equidistant structures need to be consis-
tently assigned, regardless.

At 286.4 K (the starred data point for the teal clus-
ter in Fig. 3), the probabilities of the two clusters start
to approach 1/2; and cluster 2 adopts a frayed—end cen-
troid. At first glance, this seems to be fully consistent
with the typical paradigm for melting, where the ends
first fray. Yet, this cluster still has a large average num-
ber of base pairs, larger than its centroid would indicate.
In this situation, k—means is identifying a common—a
“base”—stem, around which the molecular ends assume
many different folds. The nearest secondary structure to
all those different folds is one with the frayed end.

This is essentially an argument of structural diversity:
There are many folds but there is a common base stem.
To make this more quantitative and to also help under-
stand the impact on the clustering process, we compute
an entropic measure of structural diversity,

L L L
S = _ZZZPU log pij, (5)

i=1 j=0

where p;; is the probability that base ¢ pairs with base
7, the j = 0 term, p;g = 1 — Zle pij, accounts for the
unpaired state, and L is the length of DNA sequence. A
related binary measure, Hp = — 7 Zle[pi logp; + (1 —
pi)log(1l — p;)], where p; = Zle pij, satisfies Hp < S
since p;, 1 — p; majorizes {p;;}.

Figure 5a shows the structural diversity versus tem-
perature for the full ensemble and for each cluster, and
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FIG. 5. Structural diversity.

(a) The structural diversity, Eq. (5), versus temperature for the ensemble (orange) and

individual clusters (red, teal). The shaded regions are the BSE. This measure of diversity is essentially the average base—to—
base pairing entropy. Prior to melting, the diversity is steadily increasing. At 286.40 K—the starred data point in Fig. 3—the
teal cluster starts to absorb this diversity, reflected by a discontinuity in its first derivative. This cluster assumes a centroid with
a frayed end, yet most of its structures are more folded, just with different folds. Above melting, the teal cluster has a slowly
decreasing diversity (prior to sampling artifacts after about 350 K). (b) Other metrics for diversity, such as the unique fraction
of secondary structures and the spread in base pairing, confirm this picture of ensemble diversity increasing pre—melting and
the lower cluster absorbing this diversity. The connecting lines are guides to the eye only.

Fig. 5b shows other measures. At low temperature, the
ensemble diversity takes on a relatively high value due
to the nature of the pseudo-random DNA, which does
not have a particular target fold. This value steadily
increases as the temperature increases towards melting.
The diversity of the clusters initially tracks the ensemble
value, albeit lower because the clustering process parti-
tions the ensemble in to more well-defined—yet still quite
diverse here—structural distributions. Near the starred
data point in Fig. 3b, there is an abrupt uptick in the
diversity of the teal cluster. This is a response to the
steadily increasing ensemble diversity, requiring that one
or both the clusters become more heterogeneous. For
this molecule, the second cluster absorbs this extra di-
versity by taking on the “lowest common denominator”
centroid, a frayed structure.

We designate the appearance of this frayed centroid
as the start of a pre-melting regime. The phrase is not
because of the frayed—end structure, per se, but rather
the large diversity of folds—essentially, a hybridization
entropy—that have to be captured by one of the cen-
troids. However, the boundaries of this regime are not
well defined and are in part a consequence of the cluster-
ing technique (and the use of k = 2) itself. As seen in
Fig. 4, the folded and frayed centroid pair continues for
about 10 K (three replicas). The lower probability cen-
troid then melts further (the hairpin loop opens more),
becoming fully unfolded just before the melting transi-
tion. The folded and unfolded centroids then swap places
at the melting temperature (at the closest temperature
replica, which is at 311.8 K).

Already at this stage, secondary—structure clustering
and, specifically, with k—means at a fixed k, is useful:
It is partitioning the ensemble into important structures
and common motifs and is doing so without human inter-
vention. Yet, this clustering has done something more.

The identified common motif in the pre—melting regime
is actually a persistent motif post—melting, even as most
of the ensemble becomes unstructured. The lower prob-
ability centroid post-melting, from 317.1 K to 345.3 K,
is the same as the pre-melting one at 301.4 K. At higher
temperatures still (> 350 K), the second cluster starts
to have very few members. Just after 350 K, it has
about 400 members out of 100 k total for the ensem-
ble at a fixed temperature. This goes down to 5 mem-
bers at the last temperature. Thus, this region is insuf-
ficiently sampled to form two clusters, resulting in noisy
clustering. Larger ensembles, and associated more costly
REMD simulations, would enable tracking its evolution
to higher temperatures. We expect that the same mo-
tif state will continue to have an exponential decrease in
probability, although it is possible that clustering would
identify, e.g., the motif with fewer base pairs as temper-
ature increases. In principle, such a configuration could
be an artifact of REMD, but its quantitative properties
are in line with thermodynamic expectations, see below.

At the qualitative level, the above observations in-
dicate that the secondary structure clustering with k-
means is identifying important features of the ensemble.
The common stem motif that persists to high tempera-
ture but that also captures heterogeneity at low temper-
ature is particularly surprising. This residual fold is not
visible in projections using principal component analysis
(PCA) due to dominance of flexible-end motion, but is
clearly revealed by secondary—structure clustering.

At the quantitative level, the probability of the lower
probability cluster—the one that contains this motif—
follows a Boltzmann factor, as shown in the inset to
Fig. 3b. Above melting, the dominant state is the un-
folded state—cluster 1— and the partition function will



be approximately just its contribution,

Z — O[l@iEl/kBT + azesz/kBT ~ aleiEl/kBT7 (6)
where kp is Boltzmann’s constant, «; the number of con-
figurations of state i, and E; their energy. Thus, the

probability for the motif state is
P, = age_E"’/kBT/Z ~ (Oéz/al)e_A/kBTa (7)

with A = Ey — E;. Moreover, we also can estimate the
prefactor, which is given by the change in configurational
entropy when going from the unfolded to motif state,

az/ay = eSS0 ks (8)

For dangling, single-strand regions, the entropy is related
to a freely—jointed chain model (FJCM) with N repeat
units of length of [. For completeness, the average radius
of gyration of the unfolded state is about 3.4 nm. Using
(R,) = V/N1/v/6 yields | ~ 1.2 nm. In our approximation
below, [ will cancel out so we do not need its value. For
the unfolded state, N = 50. The motif state has about 8
base pairs on average, although 28 bases are within the
stem motif. From the FJCM, the change in entropy if
Ny nucleotides have to be fully extended is
3 R? 3

52_51:_§k3W:_§kBNM’ (9)
where we took R = Njs - [ as the extension. The re-
maining nucleotides, N — N}y, are all still “FJCM” and
thus they don’t contribute to the entropy change. For the
approximation here, we take fully extended to be equiv-
alent to fully structured since the oligonucleotide is not
actually extended but fixed into a stem motif.

Using Eq. (9), the probability, Eq. (7), becomes

Py~ ¢ 3N /2= 2 kpT (10)

The fit yields A = (—1.00£0.02) eV and Nj; = 25.54+0.6,
where the quoted uncertainties are plus and minus one
standard error from the fit of P,. This level of stabiliza-
tion () is consistent with having six Watson—Crick base
pairs and a couple additional mismatches: Using stan-
dard nearest—neighbor thermodynamics for a six base
pair stem with one bulge and AT-rich termini gives
A~ —1.15 eV (= —26.6 kcal/mol) [48]. The two mis-
matched pairs that appear in many of the cluster struc-
tures will give a stabilizing correction to this, whereas
the bulge will give some destabilizing correction, keeping
the overall estimate roughly in line with this value.

The value of Ny, is in reasonable agreement with the
number of bases fixed in the stem region. A better ap-
proximation would examine the change in entropy to a
rigid rod and also account for the loops in the stem re-
gion. In either case, one expects Ny < 28, since the
hairpin loop retains significant entropy. That Eq. (10)
captures the minority cluster supports that secondary—
structure clustering with k—means is identifying a char-
acteristic feature of the ensemble.

IV. CONCLUSION

We further developed the base—pair distance and
secondary—structure clustering to compress and under-
stand the conformational ensemble from atomistic (here,
coarse—grained) simulations. By construction, this re-
moves disorder due to atomistic motion (flexibility and
vibrations) that can obscure underlying order. We con-
sidered the evolution of clusters versus temperature and
with k fixed as a fine graining parameter. To exam-
ine such a variable sweep, we identified and solved two
methodological problems: consistently assigning equidis-
tant clusters and employing a concept of reference sets.
These reflect the natural flow of information versus some
physical parameter (here, temperature). Other issues
were standard and include requiring reasonable S and
sufficient REMD to yield large, high fidelity ensembles.

Secondary—structure clustering with k—means identi-
fies sub—populations of structures and an important mo-
tif.  Qualitatively, we find that it provides a simple,
digestible view of melting. Quantitatively, the motif
had clear thermodynamic signatures in terms of both
its configurational entropy change and its energetics.
A strength of the secondary—structure clustering is the
identification of this particular motif (with six base
pairs in the centroid and eight on average) as the lead-
ing order thermodynamic contribution—i.e., the “first
excitation”—above the unfolded state. While it will be
challenging due to the small probability, this feature may
be identifiable experimentally in, e.g., single-molecule
measurements with nanopores or other techniques.

We expect that for other molecules and clustering al-
gorithms, secondary-structure clustering will be able to
identify features of ensembles that will otherwise be ob-
scured by disorder and be concealed within, e.g., PCA.
Yet, there are two observations in this work that likely
are particular to certain molecule types and clustering
approaches. While k—means clustering is effective for
compressing the ensemble, the centroids tend to have
fewer base pairs than the cluster average, indicating that
they under represent the structural content. The hy-
bridization disorder of the pseudo-random DNA seems
to be in part responsible for this. There are many folds
that have to be captured by a limited set of centroids.
Moreover, this same observation indicates that k—means
is partitioning the ensemble rather than “clustering” it.
Despite this, the clustering of the heterogeneous ensem-
ble is supplying information about common structural
motifs. Moreover, it acts, in a way, as a histogram of
the ensemble, which will help to assess convergence and
to quantify how well two state models of melting work.
The observation of a quantitative thermodynamic con-
nection is especially promising. We expect the approach
will be helpful in an array of applications, such as DNA
nanotechnology and disordered RNA drug targets.
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I. CLUSTERING ARTIFACTS

Figure [S1] compares three alternative strategies within A—means clustering. In Fig. [STh,
the basic procedure takes a typical k—means assignment approach, randomly assigning clus-
ter numbers to structures that are equidistant to multiple centroids. This introduces a
temperature-to—temperature variability in cluster assignment, resulting in fluctuations in
cluster probabilities and other characteristics. In Fig. [SIb, we assign equidistant structures
deterministically, putting them into the lower probability cluster. This stabilizes assignments
and removes some of the variance in the evolution of the cluster characteristics. Assigning
equidistant structures to the highest probability cluster instead does not change our con-
clusions, but does modify the probability curves. We note that other consistent assignment
strategies are possible, including randomly assigning equidistant structures at the temper-
ature at which they first appear and then maintaining consistency thereafter. Figure
shows the results with a cross—temperature global check: centroid sets produced at all tem-
peratures are tested for lowering the cost function at all other temperatures. This additional
step selects the centroids with the lowest cost, mitigating local-optimum artifacts that arise

when there are not enough independent trials of the clustering.

II. CLUSTER AND ENSEMBLE CENTROIDS

Below, we show the ensemble centroid and cluster centroids corresponding to all the

temperature replicas in Fig. 3 of the main text. For temperatures with a common cluster



a b C
( ) 15 3::::;:::.. ( )15 ::::::;:. ( )15 :::::::3:,.
10 10 - 10
=
£
5 F 5 F 5 F
0 | ®eeepesccsessccccccccce 0 | ®esepescesessccccccccce 0 F | ®esepescesecsccccccccce
250 300 350 400 450 250 300 350 400 450 250 300 350 400 450
1.0 F 1.0F 1.0fF
08 : 08| . 0.8
0.6F = oo 0.6 [ . 0.6 ’
Q
0.4 F 0.4 0.4 .
0.2 0.2 0.2
0.0 F | “tespescessopcsscsnccne 0.0 | *eepeccsssssscssscesnse 0.0 | ....r...°°°°l'°°°°°°l°°°°
250 300 350 400 450 250 300 350 400 450 250 300 350 400 450
T (K) T (K) T (K)

FIG. S1. k—means strategies. (a) Typical k—means: structures equidistant to multiple centroids
are assigned at random. This results in large fluctuations of the probability, as well as smaller
fluctuations in the average number of base pairs. (b) Equidistant structures are consistently allo-
cated to the lower probability cluster. This regularization some of the fluctuations. (¢) The same
as in (b) plus a cross—temperature global check: centroid sets from all temperatures are used to
compute cost at all other temperatures, and the set that yields the lowest cost is selected. This
yields consistent, smooth characteristics, except above about 350 K here, where sampling would

need to be exponentially larger to capture the minority cluster.

and ensemble centroids, we show that set just one time along with the relevant temperature
range on the left. The centroids highlight the main structural motifs and their temperature
dependence across the melting transition. We also show above the arrows the number of base

pairs that must be broken (formed) to transform the cluster centroids into the ensemble.
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